Metamath Proof Explorer


Theorem zrtermoringc

Description: The zero ring is a terminal object in the category of unital rings. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses zrtermoringc.u φUV
zrtermoringc.c C=RingCatU
zrtermoringc.z φZRingNzRing
zrtermoringc.e φZU
Assertion zrtermoringc φZTermOC

Proof

Step Hyp Ref Expression
1 zrtermoringc.u φUV
2 zrtermoringc.c C=RingCatU
3 zrtermoringc.z φZRingNzRing
4 zrtermoringc.e φZU
5 eqid BaseC=BaseC
6 2 5 1 ringcbas φBaseC=URing
7 6 eleq2d φrBaseCrURing
8 elin rURingrUrRing
9 8 simprbi rURingrRing
10 7 9 syl6bi φrBaseCrRing
11 10 imp φrBaseCrRing
12 3 adantr φrBaseCZRingNzRing
13 eqid Baser=Baser
14 eqid 0Z=0Z
15 eqid xBaser0Z=xBaser0Z
16 13 14 15 c0rhm rRingZRingNzRingxBaser0ZrRingHomZ
17 11 12 16 syl2anc φrBaseCxBaser0ZrRingHomZ
18 simpr φrBaseCxBaser0ZrRingHomZxBaser0ZrRingHomZ
19 1 adantr φrBaseCUV
20 eqid HomC=HomC
21 simpr φrBaseCrBaseC
22 3 eldifad φZRing
23 4 22 elind φZURing
24 23 6 eleqtrrd φZBaseC
25 24 adantr φrBaseCZBaseC
26 2 5 19 20 21 25 ringchom φrBaseCrHomCZ=rRingHomZ
27 26 eqcomd φrBaseCrRingHomZ=rHomCZ
28 27 eleq2d φrBaseCxBaser0ZrRingHomZxBaser0ZrHomCZ
29 28 biimpa φrBaseCxBaser0ZrRingHomZxBaser0ZrHomCZ
30 26 eleq2d φrBaseChrHomCZhrRingHomZ
31 eqid BaseZ=BaseZ
32 13 31 rhmf hrRingHomZh:BaserBaseZ
33 30 32 syl6bi φrBaseChrHomCZh:BaserBaseZ
34 33 adantr φrBaseCxBaser0ZrRingHomZhrHomCZh:BaserBaseZ
35 ffn h:BaserBaseZhFnBaser
36 35 adantl φrBaseCxBaser0ZrRingHomZh:BaserBaseZhFnBaser
37 fvex 0ZV
38 37 15 fnmpti xBaser0ZFnBaser
39 38 a1i φrBaseCxBaser0ZrRingHomZh:BaserBaseZxBaser0ZFnBaser
40 31 14 0ringbas ZRingNzRingBaseZ=0Z
41 3 40 syl φBaseZ=0Z
42 41 adantr φrBaseCBaseZ=0Z
43 42 feq3d φrBaseCh:BaserBaseZh:Baser0Z
44 fvconst h:Baser0ZaBaserha=0Z
45 44 ex h:Baser0ZaBaserha=0Z
46 43 45 syl6bi φrBaseCh:BaserBaseZaBaserha=0Z
47 46 adantr φrBaseCxBaser0ZrRingHomZh:BaserBaseZaBaserha=0Z
48 47 imp31 φrBaseCxBaser0ZrRingHomZh:BaserBaseZaBaserha=0Z
49 eqidd aBaserxBaser0Z=xBaser0Z
50 eqidd aBaserx=a0Z=0Z
51 id aBaseraBaser
52 37 a1i aBaser0ZV
53 49 50 51 52 fvmptd aBaserxBaser0Za=0Z
54 53 adantl φrBaseCxBaser0ZrRingHomZh:BaserBaseZaBaserxBaser0Za=0Z
55 48 54 eqtr4d φrBaseCxBaser0ZrRingHomZh:BaserBaseZaBaserha=xBaser0Za
56 36 39 55 eqfnfvd φrBaseCxBaser0ZrRingHomZh:BaserBaseZh=xBaser0Z
57 56 ex φrBaseCxBaser0ZrRingHomZh:BaserBaseZh=xBaser0Z
58 34 57 syld φrBaseCxBaser0ZrRingHomZhrHomCZh=xBaser0Z
59 58 alrimiv φrBaseCxBaser0ZrRingHomZhhrHomCZh=xBaser0Z
60 18 29 59 3jca φrBaseCxBaser0ZrRingHomZxBaser0ZrRingHomZxBaser0ZrHomCZhhrHomCZh=xBaser0Z
61 17 60 mpdan φrBaseCxBaser0ZrRingHomZxBaser0ZrHomCZhhrHomCZh=xBaser0Z
62 eleq1 h=xBaser0ZhrHomCZxBaser0ZrHomCZ
63 62 eqeu xBaser0ZrRingHomZxBaser0ZrHomCZhhrHomCZh=xBaser0Z∃!hhrHomCZ
64 61 63 syl φrBaseC∃!hhrHomCZ
65 64 ralrimiva φrBaseC∃!hhrHomCZ
66 2 ringccat UVCCat
67 1 66 syl φCCat
68 5 20 67 24 istermo φZTermOCrBaseC∃!hhrHomCZ
69 65 68 mpbird φZTermOC