Description: The zero ring is a terminal object in the category of unital rings. (Contributed by AV, 17-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zrtermoringc.u | |
|
zrtermoringc.c | |
||
zrtermoringc.z | |
||
zrtermoringc.e | |
||
Assertion | zrtermoringc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrtermoringc.u | |
|
2 | zrtermoringc.c | |
|
3 | zrtermoringc.z | |
|
4 | zrtermoringc.e | |
|
5 | eqid | |
|
6 | 2 5 1 | ringcbas | |
7 | 6 | eleq2d | |
8 | elin | |
|
9 | 8 | simprbi | |
10 | 7 9 | syl6bi | |
11 | 10 | imp | |
12 | 3 | adantr | |
13 | eqid | |
|
14 | eqid | |
|
15 | eqid | |
|
16 | 13 14 15 | c0rhm | |
17 | 11 12 16 | syl2anc | |
18 | simpr | |
|
19 | 1 | adantr | |
20 | eqid | |
|
21 | simpr | |
|
22 | 3 | eldifad | |
23 | 4 22 | elind | |
24 | 23 6 | eleqtrrd | |
25 | 24 | adantr | |
26 | 2 5 19 20 21 25 | ringchom | |
27 | 26 | eqcomd | |
28 | 27 | eleq2d | |
29 | 28 | biimpa | |
30 | 26 | eleq2d | |
31 | eqid | |
|
32 | 13 31 | rhmf | |
33 | 30 32 | syl6bi | |
34 | 33 | adantr | |
35 | ffn | |
|
36 | 35 | adantl | |
37 | fvex | |
|
38 | 37 15 | fnmpti | |
39 | 38 | a1i | |
40 | 31 14 | 0ringbas | |
41 | 3 40 | syl | |
42 | 41 | adantr | |
43 | 42 | feq3d | |
44 | fvconst | |
|
45 | 44 | ex | |
46 | 43 45 | syl6bi | |
47 | 46 | adantr | |
48 | 47 | imp31 | |
49 | eqidd | |
|
50 | eqidd | |
|
51 | id | |
|
52 | 37 | a1i | |
53 | 49 50 51 52 | fvmptd | |
54 | 53 | adantl | |
55 | 48 54 | eqtr4d | |
56 | 36 39 55 | eqfnfvd | |
57 | 56 | ex | |
58 | 34 57 | syld | |
59 | 58 | alrimiv | |
60 | 18 29 59 | 3jca | |
61 | 17 60 | mpdan | |
62 | eleq1 | |
|
63 | 62 | eqeu | |
64 | 61 63 | syl | |
65 | 64 | ralrimiva | |
66 | 2 | ringccat | |
67 | 1 66 | syl | |
68 | 5 20 67 24 | istermo | |
69 | 65 68 | mpbird | |