| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
| 2 |
1
|
mul01d |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 · 0 ) = 0 ) |
| 3 |
2
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 · 0 ) = 0 ) |
| 4 |
|
zcn |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) |
| 5 |
4
|
mul01d |
⊢ ( 𝐵 ∈ ℤ → ( 𝐵 · 0 ) = 0 ) |
| 6 |
5
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 · 0 ) = 0 ) |
| 7 |
3 6
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 · 0 ) = ( 𝐵 · 0 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( 𝐴 · 0 ) = ( 𝐵 · 0 ) ) |
| 9 |
8
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( ( 𝐴 · 0 ) mod 𝑁 ) = ( ( 𝐵 · 0 ) mod 𝑁 ) ) |
| 10 |
9
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ) → ( ( 𝐴 · 0 ) mod 𝑁 ) = ( ( 𝐵 · 0 ) mod 𝑁 ) ) |
| 11 |
|
oveq2 |
⊢ ( 𝐶 = 0 → ( 𝐴 · 𝐶 ) = ( 𝐴 · 0 ) ) |
| 12 |
11
|
oveq1d |
⊢ ( 𝐶 = 0 → ( ( 𝐴 · 𝐶 ) mod 𝑁 ) = ( ( 𝐴 · 0 ) mod 𝑁 ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝐶 = 0 → ( 𝐵 · 𝐶 ) = ( 𝐵 · 0 ) ) |
| 14 |
13
|
oveq1d |
⊢ ( 𝐶 = 0 → ( ( 𝐵 · 𝐶 ) mod 𝑁 ) = ( ( 𝐵 · 0 ) mod 𝑁 ) ) |
| 15 |
12 14
|
eqeq12d |
⊢ ( 𝐶 = 0 → ( ( ( 𝐴 · 𝐶 ) mod 𝑁 ) = ( ( 𝐵 · 𝐶 ) mod 𝑁 ) ↔ ( ( 𝐴 · 0 ) mod 𝑁 ) = ( ( 𝐵 · 0 ) mod 𝑁 ) ) ) |
| 16 |
10 15
|
imbitrrid |
⊢ ( 𝐶 = 0 → ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ) → ( ( 𝐴 · 𝐶 ) mod 𝑁 ) = ( ( 𝐵 · 𝐶 ) mod 𝑁 ) ) ) |
| 17 |
|
oveq2 |
⊢ ( 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) → ( 𝐴 mod 𝑀 ) = ( 𝐴 mod ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) |
| 18 |
|
oveq2 |
⊢ ( 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) → ( 𝐵 mod 𝑀 ) = ( 𝐵 mod ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) |
| 19 |
17 18
|
eqeq12d |
⊢ ( 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ ( 𝐴 mod ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) = ( 𝐵 mod ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ ( 𝐴 mod ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) = ( 𝐵 mod ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ) |
| 21 |
20
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ ( 𝐴 mod ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) = ( 𝐵 mod ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ) |
| 22 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
| 23 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐶 ∈ ℤ ) |
| 24 |
|
divgcdnnr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐶 ∈ ℤ ) → ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ∈ ℕ ) |
| 25 |
22 23 24
|
syl2anr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ∈ ℕ ) |
| 26 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → 𝐴 ∈ ℤ ) |
| 27 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → 𝐵 ∈ ℤ ) |
| 28 |
|
moddvds |
⊢ ( ( ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 mod ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) = ( 𝐵 mod ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ↔ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ∥ ( 𝐴 − 𝐵 ) ) ) |
| 29 |
25 26 27 28
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( ( 𝐴 mod ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) = ( 𝐵 mod ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ↔ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ∥ ( 𝐴 − 𝐵 ) ) ) |
| 30 |
25
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ∈ ℤ ) |
| 31 |
|
zsubcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
| 32 |
31
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
| 33 |
32
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
| 34 |
30 33
|
jca |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ) |
| 35 |
|
divides |
⊢ ( ( ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) → ( ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ∥ ( 𝐴 − 𝐵 ) ↔ ∃ 𝑘 ∈ ℤ ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) = ( 𝐴 − 𝐵 ) ) ) |
| 36 |
34 35
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ∥ ( 𝐴 − 𝐵 ) ↔ ∃ 𝑘 ∈ ℤ ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) = ( 𝐴 − 𝐵 ) ) ) |
| 37 |
21 29 36
|
3bitrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ ∃ 𝑘 ∈ ℤ ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) = ( 𝐴 − 𝐵 ) ) ) |
| 38 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝐶 ≠ 0 ) ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℤ ) |
| 39 |
30
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝐶 ≠ 0 ) → ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ∈ ℤ ) |
| 40 |
39
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝐶 ≠ 0 ) ∧ 𝑘 ∈ ℤ ) → ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ∈ ℤ ) |
| 41 |
38 40
|
zmulcld |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝐶 ≠ 0 ) ∧ 𝑘 ∈ ℤ ) → ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ∈ ℤ ) |
| 42 |
41
|
zcnd |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝐶 ≠ 0 ) ∧ 𝑘 ∈ ℤ ) → ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ∈ ℂ ) |
| 43 |
31
|
zcnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 44 |
43
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 45 |
44
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝐶 ≠ 0 ) ∧ 𝑘 ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 46 |
23
|
zcnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐶 ∈ ℂ ) |
| 47 |
46
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝐶 ≠ 0 ) ∧ 𝑘 ∈ ℤ ) → 𝐶 ∈ ℂ ) |
| 48 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝐶 ≠ 0 ) → 𝐶 ≠ 0 ) |
| 49 |
48
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝐶 ≠ 0 ) ∧ 𝑘 ∈ ℤ ) → 𝐶 ≠ 0 ) |
| 50 |
42 45 47 49
|
mulcan2d |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝐶 ≠ 0 ) ∧ 𝑘 ∈ ℤ ) → ( ( ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) · 𝐶 ) = ( ( 𝐴 − 𝐵 ) · 𝐶 ) ↔ ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) = ( 𝐴 − 𝐵 ) ) ) |
| 51 |
|
zcn |
⊢ ( 𝐶 ∈ ℤ → 𝐶 ∈ ℂ ) |
| 52 |
|
subdir |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) ) |
| 53 |
1 4 51 52
|
syl3an |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 − 𝐵 ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) ) |
| 54 |
53
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝐶 ≠ 0 ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝐴 − 𝐵 ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) ) |
| 55 |
54
|
eqeq2d |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝐶 ≠ 0 ) ∧ 𝑘 ∈ ℤ ) → ( ( ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) · 𝐶 ) = ( ( 𝐴 − 𝐵 ) · 𝐶 ) ↔ ( ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) ) ) |
| 56 |
50 55
|
bitr3d |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝐶 ≠ 0 ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) = ( 𝐴 − 𝐵 ) ↔ ( ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) ) ) |
| 57 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
| 59 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℤ ) |
| 60 |
59
|
zcnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℂ ) |
| 61 |
60
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) ) → 𝑘 ∈ ℂ ) |
| 62 |
46
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) ) → 𝐶 ∈ ℂ ) |
| 63 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) → 𝑁 ∈ ℕ ) |
| 64 |
63
|
nnzd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
| 65 |
23 64
|
anim12i |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) ) → ( 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 66 |
|
gcdcl |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐶 gcd 𝑁 ) ∈ ℕ0 ) |
| 67 |
65 66
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) ) → ( 𝐶 gcd 𝑁 ) ∈ ℕ0 ) |
| 68 |
67
|
nn0cnd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) ) → ( 𝐶 gcd 𝑁 ) ∈ ℂ ) |
| 69 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
| 70 |
69
|
neneqd |
⊢ ( 𝑁 ∈ ℕ → ¬ 𝑁 = 0 ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) → ¬ 𝑁 = 0 ) |
| 72 |
71
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) ) → ¬ 𝑁 = 0 ) |
| 73 |
72
|
intnand |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) ) → ¬ ( 𝐶 = 0 ∧ 𝑁 = 0 ) ) |
| 74 |
|
gcdeq0 |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐶 gcd 𝑁 ) = 0 ↔ ( 𝐶 = 0 ∧ 𝑁 = 0 ) ) ) |
| 75 |
65 74
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝐶 gcd 𝑁 ) = 0 ↔ ( 𝐶 = 0 ∧ 𝑁 = 0 ) ) ) |
| 76 |
75
|
necon3abid |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝐶 gcd 𝑁 ) ≠ 0 ↔ ¬ ( 𝐶 = 0 ∧ 𝑁 = 0 ) ) ) |
| 77 |
73 76
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) ) → ( 𝐶 gcd 𝑁 ) ≠ 0 ) |
| 78 |
61 62 68 77
|
divassd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝑘 · 𝐶 ) / ( 𝐶 gcd 𝑁 ) ) = ( 𝑘 · ( 𝐶 / ( 𝐶 gcd 𝑁 ) ) ) ) |
| 79 |
59
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) ) → 𝑘 ∈ ℤ ) |
| 80 |
57 69
|
jca |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) |
| 81 |
80
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) → ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) |
| 82 |
23 81
|
anim12i |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) ) → ( 𝐶 ∈ ℤ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ) |
| 83 |
|
3anass |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ↔ ( 𝐶 ∈ ℤ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ) |
| 84 |
82 83
|
sylibr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) ) → ( 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) |
| 85 |
|
divgcdz |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 𝐶 / ( 𝐶 gcd 𝑁 ) ) ∈ ℤ ) |
| 86 |
84 85
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) ) → ( 𝐶 / ( 𝐶 gcd 𝑁 ) ) ∈ ℤ ) |
| 87 |
79 86
|
zmulcld |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) ) → ( 𝑘 · ( 𝐶 / ( 𝐶 gcd 𝑁 ) ) ) ∈ ℤ ) |
| 88 |
78 87
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝑘 · 𝐶 ) / ( 𝐶 gcd 𝑁 ) ) ∈ ℤ ) |
| 89 |
|
dvdsmul1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( ( 𝑘 · 𝐶 ) / ( 𝐶 gcd 𝑁 ) ) ∈ ℤ ) → 𝑁 ∥ ( 𝑁 · ( ( 𝑘 · 𝐶 ) / ( 𝐶 gcd 𝑁 ) ) ) ) |
| 90 |
58 88 89
|
syl2an2 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) ) → 𝑁 ∥ ( 𝑁 · ( ( 𝑘 · 𝐶 ) / ( 𝐶 gcd 𝑁 ) ) ) ) |
| 91 |
63
|
nncnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) → 𝑁 ∈ ℂ ) |
| 92 |
91
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) ) → 𝑁 ∈ ℂ ) |
| 93 |
|
divmulasscom |
⊢ ( ( ( 𝑘 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( ( 𝐶 gcd 𝑁 ) ∈ ℂ ∧ ( 𝐶 gcd 𝑁 ) ≠ 0 ) ) → ( ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) · 𝐶 ) = ( 𝑁 · ( ( 𝑘 · 𝐶 ) / ( 𝐶 gcd 𝑁 ) ) ) ) |
| 94 |
61 92 62 68 77 93
|
syl32anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) · 𝐶 ) = ( 𝑁 · ( ( 𝑘 · 𝐶 ) / ( 𝐶 gcd 𝑁 ) ) ) ) |
| 95 |
90 94
|
breqtrrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) ) → 𝑁 ∥ ( ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) · 𝐶 ) ) |
| 96 |
95
|
exp32 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝑁 ∈ ℕ → ( 𝑘 ∈ ℤ → 𝑁 ∥ ( ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) · 𝐶 ) ) ) ) |
| 97 |
96
|
adantrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) → ( 𝑘 ∈ ℤ → 𝑁 ∥ ( ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) · 𝐶 ) ) ) ) |
| 98 |
97
|
imp |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( 𝑘 ∈ ℤ → 𝑁 ∥ ( ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) · 𝐶 ) ) ) |
| 99 |
98
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝐶 ≠ 0 ) → ( 𝑘 ∈ ℤ → 𝑁 ∥ ( ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) · 𝐶 ) ) ) |
| 100 |
99
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝐶 ≠ 0 ) ∧ 𝑘 ∈ ℤ ) → 𝑁 ∥ ( ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) · 𝐶 ) ) |
| 101 |
|
breq2 |
⊢ ( ( ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) → ( 𝑁 ∥ ( ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) · 𝐶 ) ↔ 𝑁 ∥ ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) ) ) |
| 102 |
100 101
|
syl5ibcom |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝐶 ≠ 0 ) ∧ 𝑘 ∈ ℤ ) → ( ( ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) → 𝑁 ∥ ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) ) ) |
| 103 |
56 102
|
sylbid |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝐶 ≠ 0 ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) = ( 𝐴 − 𝐵 ) → 𝑁 ∥ ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) ) ) |
| 104 |
103
|
rexlimdva |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝐶 ≠ 0 ) → ( ∃ 𝑘 ∈ ℤ ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) = ( 𝐴 − 𝐵 ) → 𝑁 ∥ ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) ) ) |
| 105 |
22
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → 𝑁 ∈ ℕ ) |
| 106 |
|
zmulcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 · 𝐶 ) ∈ ℤ ) |
| 107 |
106
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 · 𝐶 ) ∈ ℤ ) |
| 108 |
107
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( 𝐴 · 𝐶 ) ∈ ℤ ) |
| 109 |
|
zmulcl |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 · 𝐶 ) ∈ ℤ ) |
| 110 |
109
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 · 𝐶 ) ∈ ℤ ) |
| 111 |
110
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( 𝐵 · 𝐶 ) ∈ ℤ ) |
| 112 |
|
moddvds |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 · 𝐶 ) ∈ ℤ ∧ ( 𝐵 · 𝐶 ) ∈ ℤ ) → ( ( ( 𝐴 · 𝐶 ) mod 𝑁 ) = ( ( 𝐵 · 𝐶 ) mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) ) ) |
| 113 |
105 108 111 112
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( ( ( 𝐴 · 𝐶 ) mod 𝑁 ) = ( ( 𝐵 · 𝐶 ) mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) ) ) |
| 114 |
113
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝐶 ≠ 0 ) → ( ( ( 𝐴 · 𝐶 ) mod 𝑁 ) = ( ( 𝐵 · 𝐶 ) mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) ) ) |
| 115 |
104 114
|
sylibrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝐶 ≠ 0 ) → ( ∃ 𝑘 ∈ ℤ ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) = ( 𝐴 − 𝐵 ) → ( ( 𝐴 · 𝐶 ) mod 𝑁 ) = ( ( 𝐵 · 𝐶 ) mod 𝑁 ) ) ) |
| 116 |
115
|
ex |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( 𝐶 ≠ 0 → ( ∃ 𝑘 ∈ ℤ ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) = ( 𝐴 − 𝐵 ) → ( ( 𝐴 · 𝐶 ) mod 𝑁 ) = ( ( 𝐵 · 𝐶 ) mod 𝑁 ) ) ) ) |
| 117 |
116
|
com23 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( ∃ 𝑘 ∈ ℤ ( 𝑘 · ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) = ( 𝐴 − 𝐵 ) → ( 𝐶 ≠ 0 → ( ( 𝐴 · 𝐶 ) mod 𝑁 ) = ( ( 𝐵 · 𝐶 ) mod 𝑁 ) ) ) ) |
| 118 |
37 117
|
sylbid |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) → ( 𝐶 ≠ 0 → ( ( 𝐴 · 𝐶 ) mod 𝑁 ) = ( ( 𝐵 · 𝐶 ) mod 𝑁 ) ) ) ) |
| 119 |
118
|
imp |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ) → ( 𝐶 ≠ 0 → ( ( 𝐴 · 𝐶 ) mod 𝑁 ) = ( ( 𝐵 · 𝐶 ) mod 𝑁 ) ) ) |
| 120 |
119
|
com12 |
⊢ ( 𝐶 ≠ 0 → ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ) → ( ( 𝐴 · 𝐶 ) mod 𝑁 ) = ( ( 𝐵 · 𝐶 ) mod 𝑁 ) ) ) |
| 121 |
16 120
|
pm2.61ine |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ) → ( ( 𝐴 · 𝐶 ) mod 𝑁 ) = ( ( 𝐵 · 𝐶 ) mod 𝑁 ) ) |
| 122 |
121
|
ex |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) → ( ( 𝐴 · 𝐶 ) mod 𝑁 ) = ( ( 𝐵 · 𝐶 ) mod 𝑁 ) ) ) |