Step |
Hyp |
Ref |
Expression |
1 |
|
elntg2.1 |
β’ π = ( Base β ( EEG β π ) ) |
2 |
|
elntg2.2 |
β’ πΌ = ( 1 ... π ) |
3 |
|
eqid |
β’ ( Itv β ( EEG β π ) ) = ( Itv β ( EEG β π ) ) |
4 |
1 3
|
elntg |
β’ ( π β β β ( LineG β ( EEG β π ) ) = ( π₯ β π , π¦ β ( π β { π₯ } ) β¦ { π β π β£ ( π β ( π₯ ( Itv β ( EEG β π ) ) π¦ ) β¨ π₯ β ( π ( Itv β ( EEG β π ) ) π¦ ) β¨ π¦ β ( π₯ ( Itv β ( EEG β π ) ) π ) ) } ) ) |
5 |
|
simpl1 |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β π β β ) |
6 |
|
simpl2 |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β π₯ β π ) |
7 |
|
eldifi |
β’ ( π¦ β ( π β { π₯ } ) β π¦ β π ) |
8 |
7
|
3ad2ant3 |
β’ ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β π¦ β π ) |
9 |
8
|
adantr |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β π¦ β π ) |
10 |
|
simpr |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β π β π ) |
11 |
5 1 3 6 9 10
|
ebtwntg |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( π Btwn β¨ π₯ , π¦ β© β π β ( π₯ ( Itv β ( EEG β π ) ) π¦ ) ) ) |
12 |
|
eengbas |
β’ ( π β β β ( πΌ β π ) = ( Base β ( EEG β π ) ) ) |
13 |
1 12
|
eqtr4id |
β’ ( π β β β π = ( πΌ β π ) ) |
14 |
13
|
3ad2ant1 |
β’ ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β π = ( πΌ β π ) ) |
15 |
14
|
eleq2d |
β’ ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β ( π β π β π β ( πΌ β π ) ) ) |
16 |
15
|
biimpa |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β π β ( πΌ β π ) ) |
17 |
13
|
eleq2d |
β’ ( π β β β ( π₯ β π β π₯ β ( πΌ β π ) ) ) |
18 |
17
|
biimpa |
β’ ( ( π β β β§ π₯ β π ) β π₯ β ( πΌ β π ) ) |
19 |
18
|
3adant3 |
β’ ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β π₯ β ( πΌ β π ) ) |
20 |
19
|
adantr |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β π₯ β ( πΌ β π ) ) |
21 |
13
|
eleq2d |
β’ ( π β β β ( π¦ β π β π¦ β ( πΌ β π ) ) ) |
22 |
21
|
biimpcd |
β’ ( π¦ β π β ( π β β β π¦ β ( πΌ β π ) ) ) |
23 |
22 7
|
syl11 |
β’ ( π β β β ( π¦ β ( π β { π₯ } ) β π¦ β ( πΌ β π ) ) ) |
24 |
23
|
a1d |
β’ ( π β β β ( π₯ β π β ( π¦ β ( π β { π₯ } ) β π¦ β ( πΌ β π ) ) ) ) |
25 |
24
|
3imp |
β’ ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β π¦ β ( πΌ β π ) ) |
26 |
25
|
adantr |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β π¦ β ( πΌ β π ) ) |
27 |
|
brbtwn |
β’ ( ( π β ( πΌ β π ) β§ π₯ β ( πΌ β π ) β§ π¦ β ( πΌ β π ) ) β ( π Btwn β¨ π₯ , π¦ β© β β π β ( 0 [,] 1 ) β π β ( 1 ... π ) ( π β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π¦ β π ) ) ) ) ) |
28 |
16 20 26 27
|
syl3anc |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( π Btwn β¨ π₯ , π¦ β© β β π β ( 0 [,] 1 ) β π β ( 1 ... π ) ( π β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π¦ β π ) ) ) ) ) |
29 |
2
|
raleqi |
β’ ( β π β πΌ ( π β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π¦ β π ) ) ) β β π β ( 1 ... π ) ( π β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π¦ β π ) ) ) ) |
30 |
29
|
rexbii |
β’ ( β π β ( 0 [,] 1 ) β π β πΌ ( π β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π¦ β π ) ) ) β β π β ( 0 [,] 1 ) β π β ( 1 ... π ) ( π β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π¦ β π ) ) ) ) |
31 |
28 30
|
bitr4di |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( π Btwn β¨ π₯ , π¦ β© β β π β ( 0 [,] 1 ) β π β πΌ ( π β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π¦ β π ) ) ) ) ) |
32 |
11 31
|
bitr3d |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( π β ( π₯ ( Itv β ( EEG β π ) ) π¦ ) β β π β ( 0 [,] 1 ) β π β πΌ ( π β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π¦ β π ) ) ) ) ) |
33 |
5 1 3 10 9 6
|
ebtwntg |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( π₯ Btwn β¨ π , π¦ β© β π₯ β ( π ( Itv β ( EEG β π ) ) π¦ ) ) ) |
34 |
|
brbtwn |
β’ ( ( π₯ β ( πΌ β π ) β§ π β ( πΌ β π ) β§ π¦ β ( πΌ β π ) ) β ( π₯ Btwn β¨ π , π¦ β© β β π β ( 0 [,] 1 ) β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) ) ) |
35 |
20 16 26 34
|
syl3anc |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( π₯ Btwn β¨ π , π¦ β© β β π β ( 0 [,] 1 ) β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) ) ) |
36 |
33 35
|
bitr3d |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( π₯ β ( π ( Itv β ( EEG β π ) ) π¦ ) β β π β ( 0 [,] 1 ) β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) ) ) |
37 |
|
0xr |
β’ 0 β β* |
38 |
|
1xr |
β’ 1 β β* |
39 |
|
0le1 |
β’ 0 β€ 1 |
40 |
|
snunico |
β’ ( ( 0 β β* β§ 1 β β* β§ 0 β€ 1 ) β ( ( 0 [,) 1 ) βͺ { 1 } ) = ( 0 [,] 1 ) ) |
41 |
37 38 39 40
|
mp3an |
β’ ( ( 0 [,) 1 ) βͺ { 1 } ) = ( 0 [,] 1 ) |
42 |
41
|
eqcomi |
β’ ( 0 [,] 1 ) = ( ( 0 [,) 1 ) βͺ { 1 } ) |
43 |
42
|
a1i |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( 0 [,] 1 ) = ( ( 0 [,) 1 ) βͺ { 1 } ) ) |
44 |
43
|
rexeqdv |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( β π β ( 0 [,] 1 ) β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β β π β ( ( 0 [,) 1 ) βͺ { 1 } ) β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) ) ) |
45 |
|
rexun |
β’ ( β π β ( ( 0 [,) 1 ) βͺ { 1 } ) β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β ( β π β ( 0 [,) 1 ) β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β¨ β π β { 1 } β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) ) ) |
46 |
|
eldifsn |
β’ ( π¦ β ( π β { π₯ } ) β ( π¦ β π β§ π¦ β π₯ ) ) |
47 |
|
elee |
β’ ( π β β β ( π₯ β ( πΌ β π ) β π₯ : ( 1 ... π ) βΆ β ) ) |
48 |
|
ffn |
β’ ( π₯ : ( 1 ... π ) βΆ β β π₯ Fn ( 1 ... π ) ) |
49 |
47 48
|
syl6bi |
β’ ( π β β β ( π₯ β ( πΌ β π ) β π₯ Fn ( 1 ... π ) ) ) |
50 |
17 49
|
sylbid |
β’ ( π β β β ( π₯ β π β π₯ Fn ( 1 ... π ) ) ) |
51 |
50
|
a1i |
β’ ( π¦ β π β ( π β β β ( π₯ β π β π₯ Fn ( 1 ... π ) ) ) ) |
52 |
51
|
3imp |
β’ ( ( π¦ β π β§ π β β β§ π₯ β π ) β π₯ Fn ( 1 ... π ) ) |
53 |
|
elee |
β’ ( π β β β ( π¦ β ( πΌ β π ) β π¦ : ( 1 ... π ) βΆ β ) ) |
54 |
|
ffn |
β’ ( π¦ : ( 1 ... π ) βΆ β β π¦ Fn ( 1 ... π ) ) |
55 |
53 54
|
syl6bi |
β’ ( π β β β ( π¦ β ( πΌ β π ) β π¦ Fn ( 1 ... π ) ) ) |
56 |
21 55
|
sylbid |
β’ ( π β β β ( π¦ β π β π¦ Fn ( 1 ... π ) ) ) |
57 |
56
|
a1i |
β’ ( π₯ β π β ( π β β β ( π¦ β π β π¦ Fn ( 1 ... π ) ) ) ) |
58 |
57
|
3imp31 |
β’ ( ( π¦ β π β§ π β β β§ π₯ β π ) β π¦ Fn ( 1 ... π ) ) |
59 |
|
eqfnfv |
β’ ( ( π₯ Fn ( 1 ... π ) β§ π¦ Fn ( 1 ... π ) ) β ( π₯ = π¦ β β π β ( 1 ... π ) ( π₯ β π ) = ( π¦ β π ) ) ) |
60 |
52 58 59
|
syl2anc |
β’ ( ( π¦ β π β§ π β β β§ π₯ β π ) β ( π₯ = π¦ β β π β ( 1 ... π ) ( π₯ β π ) = ( π¦ β π ) ) ) |
61 |
60
|
biimprd |
β’ ( ( π¦ β π β§ π β β β§ π₯ β π ) β ( β π β ( 1 ... π ) ( π₯ β π ) = ( π¦ β π ) β π₯ = π¦ ) ) |
62 |
|
eqcom |
β’ ( π¦ = π₯ β π₯ = π¦ ) |
63 |
61 62
|
imbitrrdi |
β’ ( ( π¦ β π β§ π β β β§ π₯ β π ) β ( β π β ( 1 ... π ) ( π₯ β π ) = ( π¦ β π ) β π¦ = π₯ ) ) |
64 |
63
|
necon3ad |
β’ ( ( π¦ β π β§ π β β β§ π₯ β π ) β ( π¦ β π₯ β Β¬ β π β ( 1 ... π ) ( π₯ β π ) = ( π¦ β π ) ) ) |
65 |
64
|
3exp |
β’ ( π¦ β π β ( π β β β ( π₯ β π β ( π¦ β π₯ β Β¬ β π β ( 1 ... π ) ( π₯ β π ) = ( π¦ β π ) ) ) ) ) |
66 |
65
|
com24 |
β’ ( π¦ β π β ( π¦ β π₯ β ( π₯ β π β ( π β β β Β¬ β π β ( 1 ... π ) ( π₯ β π ) = ( π¦ β π ) ) ) ) ) |
67 |
66
|
imp |
β’ ( ( π¦ β π β§ π¦ β π₯ ) β ( π₯ β π β ( π β β β Β¬ β π β ( 1 ... π ) ( π₯ β π ) = ( π¦ β π ) ) ) ) |
68 |
46 67
|
sylbi |
β’ ( π¦ β ( π β { π₯ } ) β ( π₯ β π β ( π β β β Β¬ β π β ( 1 ... π ) ( π₯ β π ) = ( π¦ β π ) ) ) ) |
69 |
68
|
3imp31 |
β’ ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β Β¬ β π β ( 1 ... π ) ( π₯ β π ) = ( π¦ β π ) ) |
70 |
69
|
adantr |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β Β¬ β π β ( 1 ... π ) ( π₯ β π ) = ( π¦ β π ) ) |
71 |
13
|
eleq2d |
β’ ( π β β β ( π β π β π β ( πΌ β π ) ) ) |
72 |
|
elee |
β’ ( π β β β ( π β ( πΌ β π ) β π : ( 1 ... π ) βΆ β ) ) |
73 |
72
|
biimpd |
β’ ( π β β β ( π β ( πΌ β π ) β π : ( 1 ... π ) βΆ β ) ) |
74 |
71 73
|
sylbid |
β’ ( π β β β ( π β π β π : ( 1 ... π ) βΆ β ) ) |
75 |
74
|
3ad2ant1 |
β’ ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β ( π β π β π : ( 1 ... π ) βΆ β ) ) |
76 |
75
|
imp |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β π : ( 1 ... π ) βΆ β ) |
77 |
76
|
ffvelcdmda |
β’ ( ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β§ π β ( 1 ... π ) ) β ( π β π ) β β ) |
78 |
77
|
recnd |
β’ ( ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β§ π β ( 1 ... π ) ) β ( π β π ) β β ) |
79 |
78
|
mul02d |
β’ ( ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β§ π β ( 1 ... π ) ) β ( 0 Β· ( π β π ) ) = 0 ) |
80 |
22 53
|
mpbidi |
β’ ( π¦ β π β ( π β β β π¦ : ( 1 ... π ) βΆ β ) ) |
81 |
80 7
|
syl11 |
β’ ( π β β β ( π¦ β ( π β { π₯ } ) β π¦ : ( 1 ... π ) βΆ β ) ) |
82 |
81
|
a1d |
β’ ( π β β β ( π₯ β π β ( π¦ β ( π β { π₯ } ) β π¦ : ( 1 ... π ) βΆ β ) ) ) |
83 |
82
|
3imp |
β’ ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β π¦ : ( 1 ... π ) βΆ β ) |
84 |
83
|
adantr |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β π¦ : ( 1 ... π ) βΆ β ) |
85 |
84
|
ffvelcdmda |
β’ ( ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β§ π β ( 1 ... π ) ) β ( π¦ β π ) β β ) |
86 |
85
|
recnd |
β’ ( ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β§ π β ( 1 ... π ) ) β ( π¦ β π ) β β ) |
87 |
86
|
mullidd |
β’ ( ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β§ π β ( 1 ... π ) ) β ( 1 Β· ( π¦ β π ) ) = ( π¦ β π ) ) |
88 |
79 87
|
oveq12d |
β’ ( ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β§ π β ( 1 ... π ) ) β ( ( 0 Β· ( π β π ) ) + ( 1 Β· ( π¦ β π ) ) ) = ( 0 + ( π¦ β π ) ) ) |
89 |
86
|
addlidd |
β’ ( ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β§ π β ( 1 ... π ) ) β ( 0 + ( π¦ β π ) ) = ( π¦ β π ) ) |
90 |
88 89
|
eqtrd |
β’ ( ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β§ π β ( 1 ... π ) ) β ( ( 0 Β· ( π β π ) ) + ( 1 Β· ( π¦ β π ) ) ) = ( π¦ β π ) ) |
91 |
90
|
eqeq2d |
β’ ( ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β§ π β ( 1 ... π ) ) β ( ( π₯ β π ) = ( ( 0 Β· ( π β π ) ) + ( 1 Β· ( π¦ β π ) ) ) β ( π₯ β π ) = ( π¦ β π ) ) ) |
92 |
91
|
ralbidva |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( β π β ( 1 ... π ) ( π₯ β π ) = ( ( 0 Β· ( π β π ) ) + ( 1 Β· ( π¦ β π ) ) ) β β π β ( 1 ... π ) ( π₯ β π ) = ( π¦ β π ) ) ) |
93 |
70 92
|
mtbird |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β Β¬ β π β ( 1 ... π ) ( π₯ β π ) = ( ( 0 Β· ( π β π ) ) + ( 1 Β· ( π¦ β π ) ) ) ) |
94 |
|
1re |
β’ 1 β β |
95 |
|
oveq2 |
β’ ( π = 1 β ( 1 β π ) = ( 1 β 1 ) ) |
96 |
95
|
oveq1d |
β’ ( π = 1 β ( ( 1 β π ) Β· ( π β π ) ) = ( ( 1 β 1 ) Β· ( π β π ) ) ) |
97 |
|
1m1e0 |
β’ ( 1 β 1 ) = 0 |
98 |
97
|
oveq1i |
β’ ( ( 1 β 1 ) Β· ( π β π ) ) = ( 0 Β· ( π β π ) ) |
99 |
96 98
|
eqtrdi |
β’ ( π = 1 β ( ( 1 β π ) Β· ( π β π ) ) = ( 0 Β· ( π β π ) ) ) |
100 |
|
oveq1 |
β’ ( π = 1 β ( π Β· ( π¦ β π ) ) = ( 1 Β· ( π¦ β π ) ) ) |
101 |
99 100
|
oveq12d |
β’ ( π = 1 β ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) = ( ( 0 Β· ( π β π ) ) + ( 1 Β· ( π¦ β π ) ) ) ) |
102 |
101
|
eqeq2d |
β’ ( π = 1 β ( ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β ( π₯ β π ) = ( ( 0 Β· ( π β π ) ) + ( 1 Β· ( π¦ β π ) ) ) ) ) |
103 |
102
|
ralbidv |
β’ ( π = 1 β ( β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β β π β ( 1 ... π ) ( π₯ β π ) = ( ( 0 Β· ( π β π ) ) + ( 1 Β· ( π¦ β π ) ) ) ) ) |
104 |
103
|
rexsng |
β’ ( 1 β β β ( β π β { 1 } β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β β π β ( 1 ... π ) ( π₯ β π ) = ( ( 0 Β· ( π β π ) ) + ( 1 Β· ( π¦ β π ) ) ) ) ) |
105 |
94 104
|
ax-mp |
β’ ( β π β { 1 } β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β β π β ( 1 ... π ) ( π₯ β π ) = ( ( 0 Β· ( π β π ) ) + ( 1 Β· ( π¦ β π ) ) ) ) |
106 |
93 105
|
sylnibr |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β Β¬ β π β { 1 } β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) ) |
107 |
2
|
raleqi |
β’ ( β π β πΌ ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) ) |
108 |
107
|
rexbii |
β’ ( β π β ( 0 [,) 1 ) β π β πΌ ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β β π β ( 0 [,) 1 ) β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) ) |
109 |
|
biorf |
β’ ( Β¬ β π β { 1 } β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β ( β π β ( 0 [,) 1 ) β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β ( β π β { 1 } β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β¨ β π β ( 0 [,) 1 ) β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) ) ) ) |
110 |
108 109
|
bitrid |
β’ ( Β¬ β π β { 1 } β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β ( β π β ( 0 [,) 1 ) β π β πΌ ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β ( β π β { 1 } β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β¨ β π β ( 0 [,) 1 ) β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) ) ) ) |
111 |
106 110
|
syl |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( β π β ( 0 [,) 1 ) β π β πΌ ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β ( β π β { 1 } β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β¨ β π β ( 0 [,) 1 ) β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) ) ) ) |
112 |
|
orcom |
β’ ( ( β π β { 1 } β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β¨ β π β ( 0 [,) 1 ) β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) ) β ( β π β ( 0 [,) 1 ) β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β¨ β π β { 1 } β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) ) ) |
113 |
111 112
|
bitr2di |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( ( β π β ( 0 [,) 1 ) β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β¨ β π β { 1 } β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) ) β β π β ( 0 [,) 1 ) β π β πΌ ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) ) ) |
114 |
45 113
|
bitrid |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( β π β ( ( 0 [,) 1 ) βͺ { 1 } ) β π β ( 1 ... π ) ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β β π β ( 0 [,) 1 ) β π β πΌ ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) ) ) |
115 |
36 44 114
|
3bitrd |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( π₯ β ( π ( Itv β ( EEG β π ) ) π¦ ) β β π β ( 0 [,) 1 ) β π β πΌ ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) ) ) |
116 |
5 1 3 6 10 9
|
ebtwntg |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( π¦ Btwn β¨ π₯ , π β© β π¦ β ( π₯ ( Itv β ( EEG β π ) ) π ) ) ) |
117 |
|
brbtwn |
β’ ( ( π¦ β ( πΌ β π ) β§ π₯ β ( πΌ β π ) β§ π β ( πΌ β π ) ) β ( π¦ Btwn β¨ π₯ , π β© β β π β ( 0 [,] 1 ) β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) ) ) |
118 |
26 20 16 117
|
syl3anc |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( π¦ Btwn β¨ π₯ , π β© β β π β ( 0 [,] 1 ) β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) ) ) |
119 |
116 118
|
bitr3d |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( π¦ β ( π₯ ( Itv β ( EEG β π ) ) π ) β β π β ( 0 [,] 1 ) β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) ) ) |
120 |
|
snunioc |
β’ ( ( 0 β β* β§ 1 β β* β§ 0 β€ 1 ) β ( { 0 } βͺ ( 0 (,] 1 ) ) = ( 0 [,] 1 ) ) |
121 |
37 38 39 120
|
mp3an |
β’ ( { 0 } βͺ ( 0 (,] 1 ) ) = ( 0 [,] 1 ) |
122 |
121
|
eqcomi |
β’ ( 0 [,] 1 ) = ( { 0 } βͺ ( 0 (,] 1 ) ) |
123 |
122
|
a1i |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( 0 [,] 1 ) = ( { 0 } βͺ ( 0 (,] 1 ) ) ) |
124 |
123
|
rexeqdv |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( β π β ( 0 [,] 1 ) β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) β β π β ( { 0 } βͺ ( 0 (,] 1 ) ) β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) ) ) |
125 |
|
rexun |
β’ ( β π β ( { 0 } βͺ ( 0 (,] 1 ) ) β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) β ( β π β { 0 } β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) β¨ β π β ( 0 (,] 1 ) β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) ) ) |
126 |
|
eqcom |
β’ ( ( π₯ β π ) = ( π¦ β π ) β ( π¦ β π ) = ( π₯ β π ) ) |
127 |
126
|
ralbii |
β’ ( β π β ( 1 ... π ) ( π₯ β π ) = ( π¦ β π ) β β π β ( 1 ... π ) ( π¦ β π ) = ( π₯ β π ) ) |
128 |
70 127
|
sylnib |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β Β¬ β π β ( 1 ... π ) ( π¦ β π ) = ( π₯ β π ) ) |
129 |
17
|
biimpd |
β’ ( π β β β ( π₯ β π β π₯ β ( πΌ β π ) ) ) |
130 |
129 47
|
sylibd |
β’ ( π β β β ( π₯ β π β π₯ : ( 1 ... π ) βΆ β ) ) |
131 |
130
|
imp |
β’ ( ( π β β β§ π₯ β π ) β π₯ : ( 1 ... π ) βΆ β ) |
132 |
131
|
3adant3 |
β’ ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β π₯ : ( 1 ... π ) βΆ β ) |
133 |
132
|
adantr |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β π₯ : ( 1 ... π ) βΆ β ) |
134 |
133
|
ffvelcdmda |
β’ ( ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β§ π β ( 1 ... π ) ) β ( π₯ β π ) β β ) |
135 |
134
|
recnd |
β’ ( ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β§ π β ( 1 ... π ) ) β ( π₯ β π ) β β ) |
136 |
135
|
mullidd |
β’ ( ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β§ π β ( 1 ... π ) ) β ( 1 Β· ( π₯ β π ) ) = ( π₯ β π ) ) |
137 |
136 79
|
oveq12d |
β’ ( ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β§ π β ( 1 ... π ) ) β ( ( 1 Β· ( π₯ β π ) ) + ( 0 Β· ( π β π ) ) ) = ( ( π₯ β π ) + 0 ) ) |
138 |
135
|
addridd |
β’ ( ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β§ π β ( 1 ... π ) ) β ( ( π₯ β π ) + 0 ) = ( π₯ β π ) ) |
139 |
137 138
|
eqtrd |
β’ ( ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β§ π β ( 1 ... π ) ) β ( ( 1 Β· ( π₯ β π ) ) + ( 0 Β· ( π β π ) ) ) = ( π₯ β π ) ) |
140 |
139
|
eqeq2d |
β’ ( ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β§ π β ( 1 ... π ) ) β ( ( π¦ β π ) = ( ( 1 Β· ( π₯ β π ) ) + ( 0 Β· ( π β π ) ) ) β ( π¦ β π ) = ( π₯ β π ) ) ) |
141 |
140
|
ralbidva |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( β π β ( 1 ... π ) ( π¦ β π ) = ( ( 1 Β· ( π₯ β π ) ) + ( 0 Β· ( π β π ) ) ) β β π β ( 1 ... π ) ( π¦ β π ) = ( π₯ β π ) ) ) |
142 |
128 141
|
mtbird |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β Β¬ β π β ( 1 ... π ) ( π¦ β π ) = ( ( 1 Β· ( π₯ β π ) ) + ( 0 Β· ( π β π ) ) ) ) |
143 |
|
0re |
β’ 0 β β |
144 |
|
oveq2 |
β’ ( π = 0 β ( 1 β π ) = ( 1 β 0 ) ) |
145 |
144
|
oveq1d |
β’ ( π = 0 β ( ( 1 β π ) Β· ( π₯ β π ) ) = ( ( 1 β 0 ) Β· ( π₯ β π ) ) ) |
146 |
|
1m0e1 |
β’ ( 1 β 0 ) = 1 |
147 |
146
|
oveq1i |
β’ ( ( 1 β 0 ) Β· ( π₯ β π ) ) = ( 1 Β· ( π₯ β π ) ) |
148 |
145 147
|
eqtrdi |
β’ ( π = 0 β ( ( 1 β π ) Β· ( π₯ β π ) ) = ( 1 Β· ( π₯ β π ) ) ) |
149 |
|
oveq1 |
β’ ( π = 0 β ( π Β· ( π β π ) ) = ( 0 Β· ( π β π ) ) ) |
150 |
148 149
|
oveq12d |
β’ ( π = 0 β ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) = ( ( 1 Β· ( π₯ β π ) ) + ( 0 Β· ( π β π ) ) ) ) |
151 |
150
|
eqeq2d |
β’ ( π = 0 β ( ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) β ( π¦ β π ) = ( ( 1 Β· ( π₯ β π ) ) + ( 0 Β· ( π β π ) ) ) ) ) |
152 |
151
|
ralbidv |
β’ ( π = 0 β ( β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) β β π β ( 1 ... π ) ( π¦ β π ) = ( ( 1 Β· ( π₯ β π ) ) + ( 0 Β· ( π β π ) ) ) ) ) |
153 |
152
|
rexsng |
β’ ( 0 β β β ( β π β { 0 } β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) β β π β ( 1 ... π ) ( π¦ β π ) = ( ( 1 Β· ( π₯ β π ) ) + ( 0 Β· ( π β π ) ) ) ) ) |
154 |
143 153
|
ax-mp |
β’ ( β π β { 0 } β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) β β π β ( 1 ... π ) ( π¦ β π ) = ( ( 1 Β· ( π₯ β π ) ) + ( 0 Β· ( π β π ) ) ) ) |
155 |
142 154
|
sylnibr |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β Β¬ β π β { 0 } β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) ) |
156 |
2
|
raleqi |
β’ ( β π β πΌ ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) β β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) ) |
157 |
156
|
rexbii |
β’ ( β π β ( 0 (,] 1 ) β π β πΌ ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) β β π β ( 0 (,] 1 ) β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) ) |
158 |
|
biorf |
β’ ( Β¬ β π β { 0 } β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) β ( β π β ( 0 (,] 1 ) β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) β ( β π β { 0 } β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) β¨ β π β ( 0 (,] 1 ) β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) ) ) ) |
159 |
157 158
|
bitrid |
β’ ( Β¬ β π β { 0 } β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) β ( β π β ( 0 (,] 1 ) β π β πΌ ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) β ( β π β { 0 } β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) β¨ β π β ( 0 (,] 1 ) β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) ) ) ) |
160 |
155 159
|
syl |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( β π β ( 0 (,] 1 ) β π β πΌ ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) β ( β π β { 0 } β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) β¨ β π β ( 0 (,] 1 ) β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) ) ) ) |
161 |
125 160
|
bitr4id |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( β π β ( { 0 } βͺ ( 0 (,] 1 ) ) β π β ( 1 ... π ) ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) β β π β ( 0 (,] 1 ) β π β πΌ ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) ) ) |
162 |
119 124 161
|
3bitrd |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( π¦ β ( π₯ ( Itv β ( EEG β π ) ) π ) β β π β ( 0 (,] 1 ) β π β πΌ ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) ) ) |
163 |
32 115 162
|
3orbi123d |
β’ ( ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β§ π β π ) β ( ( π β ( π₯ ( Itv β ( EEG β π ) ) π¦ ) β¨ π₯ β ( π ( Itv β ( EEG β π ) ) π¦ ) β¨ π¦ β ( π₯ ( Itv β ( EEG β π ) ) π ) ) β ( β π β ( 0 [,] 1 ) β π β πΌ ( π β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π¦ β π ) ) ) β¨ β π β ( 0 [,) 1 ) β π β πΌ ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β¨ β π β ( 0 (,] 1 ) β π β πΌ ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) ) ) ) |
164 |
163
|
rabbidva |
β’ ( ( π β β β§ π₯ β π β§ π¦ β ( π β { π₯ } ) ) β { π β π β£ ( π β ( π₯ ( Itv β ( EEG β π ) ) π¦ ) β¨ π₯ β ( π ( Itv β ( EEG β π ) ) π¦ ) β¨ π¦ β ( π₯ ( Itv β ( EEG β π ) ) π ) ) } = { π β π β£ ( β π β ( 0 [,] 1 ) β π β πΌ ( π β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π¦ β π ) ) ) β¨ β π β ( 0 [,) 1 ) β π β πΌ ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β¨ β π β ( 0 (,] 1 ) β π β πΌ ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) ) } ) |
165 |
164
|
mpoeq3dva |
β’ ( π β β β ( π₯ β π , π¦ β ( π β { π₯ } ) β¦ { π β π β£ ( π β ( π₯ ( Itv β ( EEG β π ) ) π¦ ) β¨ π₯ β ( π ( Itv β ( EEG β π ) ) π¦ ) β¨ π¦ β ( π₯ ( Itv β ( EEG β π ) ) π ) ) } ) = ( π₯ β π , π¦ β ( π β { π₯ } ) β¦ { π β π β£ ( β π β ( 0 [,] 1 ) β π β πΌ ( π β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π¦ β π ) ) ) β¨ β π β ( 0 [,) 1 ) β π β πΌ ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β¨ β π β ( 0 (,] 1 ) β π β πΌ ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) ) } ) ) |
166 |
4 165
|
eqtrd |
β’ ( π β β β ( LineG β ( EEG β π ) ) = ( π₯ β π , π¦ β ( π β { π₯ } ) β¦ { π β π β£ ( β π β ( 0 [,] 1 ) β π β πΌ ( π β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π¦ β π ) ) ) β¨ β π β ( 0 [,) 1 ) β π β πΌ ( π₯ β π ) = ( ( ( 1 β π ) Β· ( π β π ) ) + ( π Β· ( π¦ β π ) ) ) β¨ β π β ( 0 (,] 1 ) β π β πΌ ( π¦ β π ) = ( ( ( 1 β π ) Β· ( π₯ β π ) ) + ( π Β· ( π β π ) ) ) ) } ) ) |