| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fpwwe2.1 |
⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } |
| 2 |
|
fpwwe2.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 3 |
|
fpwwe2.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
| 4 |
|
fpwwe2lem8.x |
⊢ ( 𝜑 → 𝑋 𝑊 𝑅 ) |
| 5 |
|
fpwwe2lem8.y |
⊢ ( 𝜑 → 𝑌 𝑊 𝑆 ) |
| 6 |
|
fpwwe2lem8.m |
⊢ 𝑀 = OrdIso ( 𝑅 , 𝑋 ) |
| 7 |
|
fpwwe2lem8.n |
⊢ 𝑁 = OrdIso ( 𝑆 , 𝑌 ) |
| 8 |
|
fpwwe2lem8.s |
⊢ ( 𝜑 → dom 𝑀 ⊆ dom 𝑁 ) |
| 9 |
1
|
relopabiv |
⊢ Rel 𝑊 |
| 10 |
9
|
brrelex1i |
⊢ ( 𝑋 𝑊 𝑅 → 𝑋 ∈ V ) |
| 11 |
4 10
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 12 |
1 2
|
fpwwe2lem2 |
⊢ ( 𝜑 → ( 𝑋 𝑊 𝑅 ↔ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
| 13 |
4 12
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
| 14 |
13
|
simprld |
⊢ ( 𝜑 → 𝑅 We 𝑋 ) |
| 15 |
6
|
oiiso |
⊢ ( ( 𝑋 ∈ V ∧ 𝑅 We 𝑋 ) → 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) ) |
| 16 |
11 14 15
|
syl2anc |
⊢ ( 𝜑 → 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) ) |
| 17 |
|
isof1o |
⊢ ( 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) → 𝑀 : dom 𝑀 –1-1-onto→ 𝑋 ) |
| 18 |
|
f1ofo |
⊢ ( 𝑀 : dom 𝑀 –1-1-onto→ 𝑋 → 𝑀 : dom 𝑀 –onto→ 𝑋 ) |
| 19 |
|
forn |
⊢ ( 𝑀 : dom 𝑀 –onto→ 𝑋 → ran 𝑀 = 𝑋 ) |
| 20 |
16 17 18 19
|
4syl |
⊢ ( 𝜑 → ran 𝑀 = 𝑋 ) |
| 21 |
1 2 3 4 5 6 7 8
|
fpwwe2lem7 |
⊢ ( 𝜑 → 𝑀 = ( 𝑁 ↾ dom 𝑀 ) ) |
| 22 |
21
|
rneqd |
⊢ ( 𝜑 → ran 𝑀 = ran ( 𝑁 ↾ dom 𝑀 ) ) |
| 23 |
20 22
|
eqtr3d |
⊢ ( 𝜑 → 𝑋 = ran ( 𝑁 ↾ dom 𝑀 ) ) |
| 24 |
|
df-ima |
⊢ ( 𝑁 “ dom 𝑀 ) = ran ( 𝑁 ↾ dom 𝑀 ) |
| 25 |
23 24
|
eqtr4di |
⊢ ( 𝜑 → 𝑋 = ( 𝑁 “ dom 𝑀 ) ) |
| 26 |
|
imassrn |
⊢ ( 𝑁 “ dom 𝑀 ) ⊆ ran 𝑁 |
| 27 |
9
|
brrelex1i |
⊢ ( 𝑌 𝑊 𝑆 → 𝑌 ∈ V ) |
| 28 |
5 27
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 29 |
1 2
|
fpwwe2lem2 |
⊢ ( 𝜑 → ( 𝑌 𝑊 𝑆 ↔ ( ( 𝑌 ⊆ 𝐴 ∧ 𝑆 ⊆ ( 𝑌 × 𝑌 ) ) ∧ ( 𝑆 We 𝑌 ∧ ∀ 𝑦 ∈ 𝑌 [ ( ◡ 𝑆 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑆 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
| 30 |
5 29
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑌 ⊆ 𝐴 ∧ 𝑆 ⊆ ( 𝑌 × 𝑌 ) ) ∧ ( 𝑆 We 𝑌 ∧ ∀ 𝑦 ∈ 𝑌 [ ( ◡ 𝑆 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑆 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
| 31 |
30
|
simprld |
⊢ ( 𝜑 → 𝑆 We 𝑌 ) |
| 32 |
7
|
oiiso |
⊢ ( ( 𝑌 ∈ V ∧ 𝑆 We 𝑌 ) → 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) ) |
| 33 |
28 31 32
|
syl2anc |
⊢ ( 𝜑 → 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) ) |
| 34 |
|
isof1o |
⊢ ( 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) → 𝑁 : dom 𝑁 –1-1-onto→ 𝑌 ) |
| 35 |
|
f1ofo |
⊢ ( 𝑁 : dom 𝑁 –1-1-onto→ 𝑌 → 𝑁 : dom 𝑁 –onto→ 𝑌 ) |
| 36 |
|
forn |
⊢ ( 𝑁 : dom 𝑁 –onto→ 𝑌 → ran 𝑁 = 𝑌 ) |
| 37 |
33 34 35 36
|
4syl |
⊢ ( 𝜑 → ran 𝑁 = 𝑌 ) |
| 38 |
26 37
|
sseqtrid |
⊢ ( 𝜑 → ( 𝑁 “ dom 𝑀 ) ⊆ 𝑌 ) |
| 39 |
25 38
|
eqsstrd |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑌 ) |
| 40 |
13
|
simplrd |
⊢ ( 𝜑 → 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) |
| 41 |
|
relxp |
⊢ Rel ( 𝑋 × 𝑋 ) |
| 42 |
|
relss |
⊢ ( 𝑅 ⊆ ( 𝑋 × 𝑋 ) → ( Rel ( 𝑋 × 𝑋 ) → Rel 𝑅 ) ) |
| 43 |
40 41 42
|
mpisyl |
⊢ ( 𝜑 → Rel 𝑅 ) |
| 44 |
|
relinxp |
⊢ Rel ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) |
| 45 |
43 44
|
jctir |
⊢ ( 𝜑 → ( Rel 𝑅 ∧ Rel ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) ) |
| 46 |
40
|
ssbrd |
⊢ ( 𝜑 → ( 𝑥 𝑅 𝑦 → 𝑥 ( 𝑋 × 𝑋 ) 𝑦 ) ) |
| 47 |
|
brxp |
⊢ ( 𝑥 ( 𝑋 × 𝑋 ) 𝑦 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) |
| 48 |
46 47
|
imbitrdi |
⊢ ( 𝜑 → ( 𝑥 𝑅 𝑦 → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) |
| 49 |
|
brinxp2 |
⊢ ( 𝑥 ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) 𝑦 ↔ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) |
| 50 |
|
isocnv |
⊢ ( 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) → ◡ 𝑁 Isom 𝑆 , E ( 𝑌 , dom 𝑁 ) ) |
| 51 |
33 50
|
syl |
⊢ ( 𝜑 → ◡ 𝑁 Isom 𝑆 , E ( 𝑌 , dom 𝑁 ) ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ◡ 𝑁 Isom 𝑆 , E ( 𝑌 , dom 𝑁 ) ) |
| 53 |
|
isof1o |
⊢ ( ◡ 𝑁 Isom 𝑆 , E ( 𝑌 , dom 𝑁 ) → ◡ 𝑁 : 𝑌 –1-1-onto→ dom 𝑁 ) |
| 54 |
|
f1ofn |
⊢ ( ◡ 𝑁 : 𝑌 –1-1-onto→ dom 𝑁 → ◡ 𝑁 Fn 𝑌 ) |
| 55 |
52 53 54
|
3syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ◡ 𝑁 Fn 𝑌 ) |
| 56 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑥 ∈ 𝑌 ) |
| 57 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑥 𝑆 𝑦 ) |
| 58 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑋 ⊆ 𝑌 ) |
| 59 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑦 ∈ 𝑋 ) |
| 60 |
58 59
|
sseldd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑦 ∈ 𝑌 ) |
| 61 |
|
isorel |
⊢ ( ( ◡ 𝑁 Isom 𝑆 , E ( 𝑌 , dom 𝑁 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 𝑆 𝑦 ↔ ( ◡ 𝑁 ‘ 𝑥 ) E ( ◡ 𝑁 ‘ 𝑦 ) ) ) |
| 62 |
52 56 60 61
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( 𝑥 𝑆 𝑦 ↔ ( ◡ 𝑁 ‘ 𝑥 ) E ( ◡ 𝑁 ‘ 𝑦 ) ) ) |
| 63 |
57 62
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ◡ 𝑁 ‘ 𝑥 ) E ( ◡ 𝑁 ‘ 𝑦 ) ) |
| 64 |
|
fvex |
⊢ ( ◡ 𝑁 ‘ 𝑦 ) ∈ V |
| 65 |
64
|
epeli |
⊢ ( ( ◡ 𝑁 ‘ 𝑥 ) E ( ◡ 𝑁 ‘ 𝑦 ) ↔ ( ◡ 𝑁 ‘ 𝑥 ) ∈ ( ◡ 𝑁 ‘ 𝑦 ) ) |
| 66 |
63 65
|
sylib |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ◡ 𝑁 ‘ 𝑥 ) ∈ ( ◡ 𝑁 ‘ 𝑦 ) ) |
| 67 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑀 = ( 𝑁 ↾ dom 𝑀 ) ) |
| 68 |
67
|
cnveqd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ◡ 𝑀 = ◡ ( 𝑁 ↾ dom 𝑀 ) ) |
| 69 |
|
fnfun |
⊢ ( ◡ 𝑁 Fn 𝑌 → Fun ◡ 𝑁 ) |
| 70 |
|
funcnvres |
⊢ ( Fun ◡ 𝑁 → ◡ ( 𝑁 ↾ dom 𝑀 ) = ( ◡ 𝑁 ↾ ( 𝑁 “ dom 𝑀 ) ) ) |
| 71 |
55 69 70
|
3syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ◡ ( 𝑁 ↾ dom 𝑀 ) = ( ◡ 𝑁 ↾ ( 𝑁 “ dom 𝑀 ) ) ) |
| 72 |
68 71
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ◡ 𝑀 = ( ◡ 𝑁 ↾ ( 𝑁 “ dom 𝑀 ) ) ) |
| 73 |
72
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ◡ 𝑀 ‘ 𝑦 ) = ( ( ◡ 𝑁 ↾ ( 𝑁 “ dom 𝑀 ) ) ‘ 𝑦 ) ) |
| 74 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑋 = ( 𝑁 “ dom 𝑀 ) ) |
| 75 |
59 74
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑦 ∈ ( 𝑁 “ dom 𝑀 ) ) |
| 76 |
75
|
fvresd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ( ◡ 𝑁 ↾ ( 𝑁 “ dom 𝑀 ) ) ‘ 𝑦 ) = ( ◡ 𝑁 ‘ 𝑦 ) ) |
| 77 |
73 76
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ◡ 𝑀 ‘ 𝑦 ) = ( ◡ 𝑁 ‘ 𝑦 ) ) |
| 78 |
|
isocnv |
⊢ ( 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) → ◡ 𝑀 Isom 𝑅 , E ( 𝑋 , dom 𝑀 ) ) |
| 79 |
|
isof1o |
⊢ ( ◡ 𝑀 Isom 𝑅 , E ( 𝑋 , dom 𝑀 ) → ◡ 𝑀 : 𝑋 –1-1-onto→ dom 𝑀 ) |
| 80 |
|
f1of |
⊢ ( ◡ 𝑀 : 𝑋 –1-1-onto→ dom 𝑀 → ◡ 𝑀 : 𝑋 ⟶ dom 𝑀 ) |
| 81 |
16 78 79 80
|
4syl |
⊢ ( 𝜑 → ◡ 𝑀 : 𝑋 ⟶ dom 𝑀 ) |
| 82 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ◡ 𝑀 : 𝑋 ⟶ dom 𝑀 ) |
| 83 |
82 59
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ◡ 𝑀 ‘ 𝑦 ) ∈ dom 𝑀 ) |
| 84 |
77 83
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ◡ 𝑁 ‘ 𝑦 ) ∈ dom 𝑀 ) |
| 85 |
6
|
oicl |
⊢ Ord dom 𝑀 |
| 86 |
|
ordtr1 |
⊢ ( Ord dom 𝑀 → ( ( ( ◡ 𝑁 ‘ 𝑥 ) ∈ ( ◡ 𝑁 ‘ 𝑦 ) ∧ ( ◡ 𝑁 ‘ 𝑦 ) ∈ dom 𝑀 ) → ( ◡ 𝑁 ‘ 𝑥 ) ∈ dom 𝑀 ) ) |
| 87 |
85 86
|
ax-mp |
⊢ ( ( ( ◡ 𝑁 ‘ 𝑥 ) ∈ ( ◡ 𝑁 ‘ 𝑦 ) ∧ ( ◡ 𝑁 ‘ 𝑦 ) ∈ dom 𝑀 ) → ( ◡ 𝑁 ‘ 𝑥 ) ∈ dom 𝑀 ) |
| 88 |
66 84 87
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ◡ 𝑁 ‘ 𝑥 ) ∈ dom 𝑀 ) |
| 89 |
55 56 88
|
elpreimad |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑥 ∈ ( ◡ ◡ 𝑁 “ dom 𝑀 ) ) |
| 90 |
|
imacnvcnv |
⊢ ( ◡ ◡ 𝑁 “ dom 𝑀 ) = ( 𝑁 “ dom 𝑀 ) |
| 91 |
74 90
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑋 = ( ◡ ◡ 𝑁 “ dom 𝑀 ) ) |
| 92 |
89 91
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑥 ∈ 𝑋 ) |
| 93 |
92 59
|
jca |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) |
| 94 |
93
|
ex |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) |
| 95 |
49 94
|
biimtrid |
⊢ ( 𝜑 → ( 𝑥 ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) 𝑦 → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) |
| 96 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑀 = ( 𝑁 ↾ dom 𝑀 ) ) |
| 97 |
96
|
cnveqd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ◡ 𝑀 = ◡ ( 𝑁 ↾ dom 𝑀 ) ) |
| 98 |
97
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ◡ 𝑀 ‘ 𝑥 ) = ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑥 ) ) |
| 99 |
97
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ◡ 𝑀 ‘ 𝑦 ) = ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑦 ) ) |
| 100 |
98 99
|
breq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ◡ 𝑀 ‘ 𝑥 ) E ( ◡ 𝑀 ‘ 𝑦 ) ↔ ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑥 ) E ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑦 ) ) ) |
| 101 |
16 78
|
syl |
⊢ ( 𝜑 → ◡ 𝑀 Isom 𝑅 , E ( 𝑋 , dom 𝑀 ) ) |
| 102 |
|
isorel |
⊢ ( ( ◡ 𝑀 Isom 𝑅 , E ( 𝑋 , dom 𝑀 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( ◡ 𝑀 ‘ 𝑥 ) E ( ◡ 𝑀 ‘ 𝑦 ) ) ) |
| 103 |
101 102
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( ◡ 𝑀 ‘ 𝑥 ) E ( ◡ 𝑀 ‘ 𝑦 ) ) ) |
| 104 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑁 “ dom 𝑀 ) = ( 𝑁 “ dom 𝑀 ) ) |
| 105 |
|
isores3 |
⊢ ( ( 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) ∧ dom 𝑀 ⊆ dom 𝑁 ∧ ( 𝑁 “ dom 𝑀 ) = ( 𝑁 “ dom 𝑀 ) ) → ( 𝑁 ↾ dom 𝑀 ) Isom E , 𝑆 ( dom 𝑀 , ( 𝑁 “ dom 𝑀 ) ) ) |
| 106 |
33 8 104 105
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ↾ dom 𝑀 ) Isom E , 𝑆 ( dom 𝑀 , ( 𝑁 “ dom 𝑀 ) ) ) |
| 107 |
|
isocnv |
⊢ ( ( 𝑁 ↾ dom 𝑀 ) Isom E , 𝑆 ( dom 𝑀 , ( 𝑁 “ dom 𝑀 ) ) → ◡ ( 𝑁 ↾ dom 𝑀 ) Isom 𝑆 , E ( ( 𝑁 “ dom 𝑀 ) , dom 𝑀 ) ) |
| 108 |
106 107
|
syl |
⊢ ( 𝜑 → ◡ ( 𝑁 ↾ dom 𝑀 ) Isom 𝑆 , E ( ( 𝑁 “ dom 𝑀 ) , dom 𝑀 ) ) |
| 109 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ◡ ( 𝑁 ↾ dom 𝑀 ) Isom 𝑆 , E ( ( 𝑁 “ dom 𝑀 ) , dom 𝑀 ) ) |
| 110 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) |
| 111 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑋 = ( 𝑁 “ dom 𝑀 ) ) |
| 112 |
110 111
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ ( 𝑁 “ dom 𝑀 ) ) |
| 113 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) |
| 114 |
113 111
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ ( 𝑁 “ dom 𝑀 ) ) |
| 115 |
|
isorel |
⊢ ( ( ◡ ( 𝑁 ↾ dom 𝑀 ) Isom 𝑆 , E ( ( 𝑁 “ dom 𝑀 ) , dom 𝑀 ) ∧ ( 𝑥 ∈ ( 𝑁 “ dom 𝑀 ) ∧ 𝑦 ∈ ( 𝑁 “ dom 𝑀 ) ) ) → ( 𝑥 𝑆 𝑦 ↔ ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑥 ) E ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑦 ) ) ) |
| 116 |
109 112 114 115
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑆 𝑦 ↔ ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑥 ) E ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑦 ) ) ) |
| 117 |
100 103 116
|
3bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑆 𝑦 ) ) |
| 118 |
39
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑌 ) |
| 119 |
118
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑌 ) |
| 120 |
119 113
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ) |
| 121 |
120
|
biantrurd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑆 𝑦 ↔ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) ) |
| 122 |
121 49
|
bitr4di |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑆 𝑦 ↔ 𝑥 ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) 𝑦 ) ) |
| 123 |
117 122
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑅 𝑦 ↔ 𝑥 ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) 𝑦 ) ) |
| 124 |
123
|
ex |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝑅 𝑦 ↔ 𝑥 ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) 𝑦 ) ) ) |
| 125 |
48 95 124
|
pm5.21ndd |
⊢ ( 𝜑 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) 𝑦 ) ) |
| 126 |
|
df-br |
⊢ ( 𝑥 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) |
| 127 |
|
df-br |
⊢ ( 𝑥 ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) |
| 128 |
125 126 127
|
3bitr3g |
⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) ) |
| 129 |
128
|
eqrelrdv2 |
⊢ ( ( ( Rel 𝑅 ∧ Rel ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) ∧ 𝜑 ) → 𝑅 = ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) |
| 130 |
45 129
|
mpancom |
⊢ ( 𝜑 → 𝑅 = ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) |
| 131 |
39 130
|
jca |
⊢ ( 𝜑 → ( 𝑋 ⊆ 𝑌 ∧ 𝑅 = ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) ) |