Step |
Hyp |
Ref |
Expression |
1 |
|
fpwwe2.1 |
⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } |
2 |
|
fpwwe2.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
fpwwe2.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
4 |
|
fpwwe2lem8.x |
⊢ ( 𝜑 → 𝑋 𝑊 𝑅 ) |
5 |
|
fpwwe2lem8.y |
⊢ ( 𝜑 → 𝑌 𝑊 𝑆 ) |
6 |
|
fpwwe2lem8.m |
⊢ 𝑀 = OrdIso ( 𝑅 , 𝑋 ) |
7 |
|
fpwwe2lem8.n |
⊢ 𝑁 = OrdIso ( 𝑆 , 𝑌 ) |
8 |
|
fpwwe2lem8.s |
⊢ ( 𝜑 → dom 𝑀 ⊆ dom 𝑁 ) |
9 |
1
|
relopabiv |
⊢ Rel 𝑊 |
10 |
9
|
brrelex1i |
⊢ ( 𝑋 𝑊 𝑅 → 𝑋 ∈ V ) |
11 |
4 10
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
12 |
1 2
|
fpwwe2lem2 |
⊢ ( 𝜑 → ( 𝑋 𝑊 𝑅 ↔ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
13 |
4 12
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
14 |
13
|
simprld |
⊢ ( 𝜑 → 𝑅 We 𝑋 ) |
15 |
6
|
oiiso |
⊢ ( ( 𝑋 ∈ V ∧ 𝑅 We 𝑋 ) → 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) ) |
16 |
11 14 15
|
syl2anc |
⊢ ( 𝜑 → 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) ) |
17 |
|
isof1o |
⊢ ( 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) → 𝑀 : dom 𝑀 –1-1-onto→ 𝑋 ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝑀 : dom 𝑀 –1-1-onto→ 𝑋 ) |
19 |
|
f1ofo |
⊢ ( 𝑀 : dom 𝑀 –1-1-onto→ 𝑋 → 𝑀 : dom 𝑀 –onto→ 𝑋 ) |
20 |
|
forn |
⊢ ( 𝑀 : dom 𝑀 –onto→ 𝑋 → ran 𝑀 = 𝑋 ) |
21 |
18 19 20
|
3syl |
⊢ ( 𝜑 → ran 𝑀 = 𝑋 ) |
22 |
1 2 3 4 5 6 7 8
|
fpwwe2lem7 |
⊢ ( 𝜑 → 𝑀 = ( 𝑁 ↾ dom 𝑀 ) ) |
23 |
22
|
rneqd |
⊢ ( 𝜑 → ran 𝑀 = ran ( 𝑁 ↾ dom 𝑀 ) ) |
24 |
21 23
|
eqtr3d |
⊢ ( 𝜑 → 𝑋 = ran ( 𝑁 ↾ dom 𝑀 ) ) |
25 |
|
df-ima |
⊢ ( 𝑁 “ dom 𝑀 ) = ran ( 𝑁 ↾ dom 𝑀 ) |
26 |
24 25
|
eqtr4di |
⊢ ( 𝜑 → 𝑋 = ( 𝑁 “ dom 𝑀 ) ) |
27 |
|
imassrn |
⊢ ( 𝑁 “ dom 𝑀 ) ⊆ ran 𝑁 |
28 |
9
|
brrelex1i |
⊢ ( 𝑌 𝑊 𝑆 → 𝑌 ∈ V ) |
29 |
5 28
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
30 |
1 2
|
fpwwe2lem2 |
⊢ ( 𝜑 → ( 𝑌 𝑊 𝑆 ↔ ( ( 𝑌 ⊆ 𝐴 ∧ 𝑆 ⊆ ( 𝑌 × 𝑌 ) ) ∧ ( 𝑆 We 𝑌 ∧ ∀ 𝑦 ∈ 𝑌 [ ( ◡ 𝑆 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑆 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
31 |
5 30
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑌 ⊆ 𝐴 ∧ 𝑆 ⊆ ( 𝑌 × 𝑌 ) ) ∧ ( 𝑆 We 𝑌 ∧ ∀ 𝑦 ∈ 𝑌 [ ( ◡ 𝑆 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑆 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
32 |
31
|
simprld |
⊢ ( 𝜑 → 𝑆 We 𝑌 ) |
33 |
7
|
oiiso |
⊢ ( ( 𝑌 ∈ V ∧ 𝑆 We 𝑌 ) → 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) ) |
34 |
29 32 33
|
syl2anc |
⊢ ( 𝜑 → 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) ) |
35 |
|
isof1o |
⊢ ( 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) → 𝑁 : dom 𝑁 –1-1-onto→ 𝑌 ) |
36 |
34 35
|
syl |
⊢ ( 𝜑 → 𝑁 : dom 𝑁 –1-1-onto→ 𝑌 ) |
37 |
|
f1ofo |
⊢ ( 𝑁 : dom 𝑁 –1-1-onto→ 𝑌 → 𝑁 : dom 𝑁 –onto→ 𝑌 ) |
38 |
|
forn |
⊢ ( 𝑁 : dom 𝑁 –onto→ 𝑌 → ran 𝑁 = 𝑌 ) |
39 |
36 37 38
|
3syl |
⊢ ( 𝜑 → ran 𝑁 = 𝑌 ) |
40 |
27 39
|
sseqtrid |
⊢ ( 𝜑 → ( 𝑁 “ dom 𝑀 ) ⊆ 𝑌 ) |
41 |
26 40
|
eqsstrd |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑌 ) |
42 |
13
|
simplrd |
⊢ ( 𝜑 → 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) |
43 |
|
relxp |
⊢ Rel ( 𝑋 × 𝑋 ) |
44 |
|
relss |
⊢ ( 𝑅 ⊆ ( 𝑋 × 𝑋 ) → ( Rel ( 𝑋 × 𝑋 ) → Rel 𝑅 ) ) |
45 |
42 43 44
|
mpisyl |
⊢ ( 𝜑 → Rel 𝑅 ) |
46 |
|
relinxp |
⊢ Rel ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) |
47 |
45 46
|
jctir |
⊢ ( 𝜑 → ( Rel 𝑅 ∧ Rel ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) ) |
48 |
42
|
ssbrd |
⊢ ( 𝜑 → ( 𝑥 𝑅 𝑦 → 𝑥 ( 𝑋 × 𝑋 ) 𝑦 ) ) |
49 |
|
brxp |
⊢ ( 𝑥 ( 𝑋 × 𝑋 ) 𝑦 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) |
50 |
48 49
|
syl6ib |
⊢ ( 𝜑 → ( 𝑥 𝑅 𝑦 → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) |
51 |
|
brinxp2 |
⊢ ( 𝑥 ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) 𝑦 ↔ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) |
52 |
|
isocnv |
⊢ ( 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) → ◡ 𝑁 Isom 𝑆 , E ( 𝑌 , dom 𝑁 ) ) |
53 |
34 52
|
syl |
⊢ ( 𝜑 → ◡ 𝑁 Isom 𝑆 , E ( 𝑌 , dom 𝑁 ) ) |
54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ◡ 𝑁 Isom 𝑆 , E ( 𝑌 , dom 𝑁 ) ) |
55 |
|
isof1o |
⊢ ( ◡ 𝑁 Isom 𝑆 , E ( 𝑌 , dom 𝑁 ) → ◡ 𝑁 : 𝑌 –1-1-onto→ dom 𝑁 ) |
56 |
|
f1ofn |
⊢ ( ◡ 𝑁 : 𝑌 –1-1-onto→ dom 𝑁 → ◡ 𝑁 Fn 𝑌 ) |
57 |
54 55 56
|
3syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ◡ 𝑁 Fn 𝑌 ) |
58 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑥 ∈ 𝑌 ) |
59 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑥 𝑆 𝑦 ) |
60 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑋 ⊆ 𝑌 ) |
61 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑦 ∈ 𝑋 ) |
62 |
60 61
|
sseldd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑦 ∈ 𝑌 ) |
63 |
|
isorel |
⊢ ( ( ◡ 𝑁 Isom 𝑆 , E ( 𝑌 , dom 𝑁 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 𝑆 𝑦 ↔ ( ◡ 𝑁 ‘ 𝑥 ) E ( ◡ 𝑁 ‘ 𝑦 ) ) ) |
64 |
54 58 62 63
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( 𝑥 𝑆 𝑦 ↔ ( ◡ 𝑁 ‘ 𝑥 ) E ( ◡ 𝑁 ‘ 𝑦 ) ) ) |
65 |
59 64
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ◡ 𝑁 ‘ 𝑥 ) E ( ◡ 𝑁 ‘ 𝑦 ) ) |
66 |
|
fvex |
⊢ ( ◡ 𝑁 ‘ 𝑦 ) ∈ V |
67 |
66
|
epeli |
⊢ ( ( ◡ 𝑁 ‘ 𝑥 ) E ( ◡ 𝑁 ‘ 𝑦 ) ↔ ( ◡ 𝑁 ‘ 𝑥 ) ∈ ( ◡ 𝑁 ‘ 𝑦 ) ) |
68 |
65 67
|
sylib |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ◡ 𝑁 ‘ 𝑥 ) ∈ ( ◡ 𝑁 ‘ 𝑦 ) ) |
69 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑀 = ( 𝑁 ↾ dom 𝑀 ) ) |
70 |
69
|
cnveqd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ◡ 𝑀 = ◡ ( 𝑁 ↾ dom 𝑀 ) ) |
71 |
|
fnfun |
⊢ ( ◡ 𝑁 Fn 𝑌 → Fun ◡ 𝑁 ) |
72 |
|
funcnvres |
⊢ ( Fun ◡ 𝑁 → ◡ ( 𝑁 ↾ dom 𝑀 ) = ( ◡ 𝑁 ↾ ( 𝑁 “ dom 𝑀 ) ) ) |
73 |
57 71 72
|
3syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ◡ ( 𝑁 ↾ dom 𝑀 ) = ( ◡ 𝑁 ↾ ( 𝑁 “ dom 𝑀 ) ) ) |
74 |
70 73
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ◡ 𝑀 = ( ◡ 𝑁 ↾ ( 𝑁 “ dom 𝑀 ) ) ) |
75 |
74
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ◡ 𝑀 ‘ 𝑦 ) = ( ( ◡ 𝑁 ↾ ( 𝑁 “ dom 𝑀 ) ) ‘ 𝑦 ) ) |
76 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑋 = ( 𝑁 “ dom 𝑀 ) ) |
77 |
61 76
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑦 ∈ ( 𝑁 “ dom 𝑀 ) ) |
78 |
77
|
fvresd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ( ◡ 𝑁 ↾ ( 𝑁 “ dom 𝑀 ) ) ‘ 𝑦 ) = ( ◡ 𝑁 ‘ 𝑦 ) ) |
79 |
75 78
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ◡ 𝑀 ‘ 𝑦 ) = ( ◡ 𝑁 ‘ 𝑦 ) ) |
80 |
|
isocnv |
⊢ ( 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) → ◡ 𝑀 Isom 𝑅 , E ( 𝑋 , dom 𝑀 ) ) |
81 |
16 80
|
syl |
⊢ ( 𝜑 → ◡ 𝑀 Isom 𝑅 , E ( 𝑋 , dom 𝑀 ) ) |
82 |
|
isof1o |
⊢ ( ◡ 𝑀 Isom 𝑅 , E ( 𝑋 , dom 𝑀 ) → ◡ 𝑀 : 𝑋 –1-1-onto→ dom 𝑀 ) |
83 |
|
f1of |
⊢ ( ◡ 𝑀 : 𝑋 –1-1-onto→ dom 𝑀 → ◡ 𝑀 : 𝑋 ⟶ dom 𝑀 ) |
84 |
81 82 83
|
3syl |
⊢ ( 𝜑 → ◡ 𝑀 : 𝑋 ⟶ dom 𝑀 ) |
85 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ◡ 𝑀 : 𝑋 ⟶ dom 𝑀 ) |
86 |
85 61
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ◡ 𝑀 ‘ 𝑦 ) ∈ dom 𝑀 ) |
87 |
79 86
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ◡ 𝑁 ‘ 𝑦 ) ∈ dom 𝑀 ) |
88 |
6
|
oicl |
⊢ Ord dom 𝑀 |
89 |
|
ordtr1 |
⊢ ( Ord dom 𝑀 → ( ( ( ◡ 𝑁 ‘ 𝑥 ) ∈ ( ◡ 𝑁 ‘ 𝑦 ) ∧ ( ◡ 𝑁 ‘ 𝑦 ) ∈ dom 𝑀 ) → ( ◡ 𝑁 ‘ 𝑥 ) ∈ dom 𝑀 ) ) |
90 |
88 89
|
ax-mp |
⊢ ( ( ( ◡ 𝑁 ‘ 𝑥 ) ∈ ( ◡ 𝑁 ‘ 𝑦 ) ∧ ( ◡ 𝑁 ‘ 𝑦 ) ∈ dom 𝑀 ) → ( ◡ 𝑁 ‘ 𝑥 ) ∈ dom 𝑀 ) |
91 |
68 87 90
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ◡ 𝑁 ‘ 𝑥 ) ∈ dom 𝑀 ) |
92 |
57 58 91
|
elpreimad |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑥 ∈ ( ◡ ◡ 𝑁 “ dom 𝑀 ) ) |
93 |
|
imacnvcnv |
⊢ ( ◡ ◡ 𝑁 “ dom 𝑀 ) = ( 𝑁 “ dom 𝑀 ) |
94 |
76 93
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑋 = ( ◡ ◡ 𝑁 “ dom 𝑀 ) ) |
95 |
92 94
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑥 ∈ 𝑋 ) |
96 |
95 61
|
jca |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) |
97 |
96
|
ex |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) |
98 |
51 97
|
syl5bi |
⊢ ( 𝜑 → ( 𝑥 ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) 𝑦 → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) |
99 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑀 = ( 𝑁 ↾ dom 𝑀 ) ) |
100 |
99
|
cnveqd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ◡ 𝑀 = ◡ ( 𝑁 ↾ dom 𝑀 ) ) |
101 |
100
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ◡ 𝑀 ‘ 𝑥 ) = ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑥 ) ) |
102 |
100
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ◡ 𝑀 ‘ 𝑦 ) = ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑦 ) ) |
103 |
101 102
|
breq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ◡ 𝑀 ‘ 𝑥 ) E ( ◡ 𝑀 ‘ 𝑦 ) ↔ ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑥 ) E ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑦 ) ) ) |
104 |
|
isorel |
⊢ ( ( ◡ 𝑀 Isom 𝑅 , E ( 𝑋 , dom 𝑀 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( ◡ 𝑀 ‘ 𝑥 ) E ( ◡ 𝑀 ‘ 𝑦 ) ) ) |
105 |
81 104
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( ◡ 𝑀 ‘ 𝑥 ) E ( ◡ 𝑀 ‘ 𝑦 ) ) ) |
106 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑁 “ dom 𝑀 ) = ( 𝑁 “ dom 𝑀 ) ) |
107 |
|
isores3 |
⊢ ( ( 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) ∧ dom 𝑀 ⊆ dom 𝑁 ∧ ( 𝑁 “ dom 𝑀 ) = ( 𝑁 “ dom 𝑀 ) ) → ( 𝑁 ↾ dom 𝑀 ) Isom E , 𝑆 ( dom 𝑀 , ( 𝑁 “ dom 𝑀 ) ) ) |
108 |
34 8 106 107
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ↾ dom 𝑀 ) Isom E , 𝑆 ( dom 𝑀 , ( 𝑁 “ dom 𝑀 ) ) ) |
109 |
|
isocnv |
⊢ ( ( 𝑁 ↾ dom 𝑀 ) Isom E , 𝑆 ( dom 𝑀 , ( 𝑁 “ dom 𝑀 ) ) → ◡ ( 𝑁 ↾ dom 𝑀 ) Isom 𝑆 , E ( ( 𝑁 “ dom 𝑀 ) , dom 𝑀 ) ) |
110 |
108 109
|
syl |
⊢ ( 𝜑 → ◡ ( 𝑁 ↾ dom 𝑀 ) Isom 𝑆 , E ( ( 𝑁 “ dom 𝑀 ) , dom 𝑀 ) ) |
111 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ◡ ( 𝑁 ↾ dom 𝑀 ) Isom 𝑆 , E ( ( 𝑁 “ dom 𝑀 ) , dom 𝑀 ) ) |
112 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) |
113 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑋 = ( 𝑁 “ dom 𝑀 ) ) |
114 |
112 113
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ ( 𝑁 “ dom 𝑀 ) ) |
115 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) |
116 |
115 113
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ ( 𝑁 “ dom 𝑀 ) ) |
117 |
|
isorel |
⊢ ( ( ◡ ( 𝑁 ↾ dom 𝑀 ) Isom 𝑆 , E ( ( 𝑁 “ dom 𝑀 ) , dom 𝑀 ) ∧ ( 𝑥 ∈ ( 𝑁 “ dom 𝑀 ) ∧ 𝑦 ∈ ( 𝑁 “ dom 𝑀 ) ) ) → ( 𝑥 𝑆 𝑦 ↔ ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑥 ) E ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑦 ) ) ) |
118 |
111 114 116 117
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑆 𝑦 ↔ ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑥 ) E ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑦 ) ) ) |
119 |
103 105 118
|
3bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑆 𝑦 ) ) |
120 |
41
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑌 ) |
121 |
120
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑌 ) |
122 |
121 115
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ) |
123 |
122
|
biantrurd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑆 𝑦 ↔ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) ) |
124 |
123 51
|
bitr4di |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑆 𝑦 ↔ 𝑥 ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) 𝑦 ) ) |
125 |
119 124
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑅 𝑦 ↔ 𝑥 ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) 𝑦 ) ) |
126 |
125
|
ex |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝑅 𝑦 ↔ 𝑥 ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) 𝑦 ) ) ) |
127 |
50 98 126
|
pm5.21ndd |
⊢ ( 𝜑 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) 𝑦 ) ) |
128 |
|
df-br |
⊢ ( 𝑥 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) |
129 |
|
df-br |
⊢ ( 𝑥 ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) |
130 |
127 128 129
|
3bitr3g |
⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) ) |
131 |
130
|
eqrelrdv2 |
⊢ ( ( ( Rel 𝑅 ∧ Rel ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) ∧ 𝜑 ) → 𝑅 = ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) |
132 |
47 131
|
mpancom |
⊢ ( 𝜑 → 𝑅 = ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) |
133 |
41 132
|
jca |
⊢ ( 𝜑 → ( 𝑋 ⊆ 𝑌 ∧ 𝑅 = ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) ) |