| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfmulc2re.1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
| 2 |
|
mbfmulc2re.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
mbfmulc2lem.3 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) |
| 4 |
|
remulcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
| 6 |
|
fconst6g |
⊢ ( 𝐵 ∈ ℝ → ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ ℝ ) |
| 7 |
2 6
|
syl |
⊢ ( 𝜑 → ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ ℝ ) |
| 8 |
3
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 9 |
|
mbfdm |
⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) |
| 10 |
1 9
|
syl |
⊢ ( 𝜑 → dom 𝐹 ∈ dom vol ) |
| 11 |
8 10
|
eqeltrrd |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 12 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
| 13 |
5 7 3 11 11 12
|
off |
⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) : 𝐴 ⟶ ℝ ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) : 𝐴 ⟶ ℝ ) |
| 15 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → 𝐴 ∈ dom vol ) |
| 16 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝑦 ∈ ℝ ) |
| 17 |
16
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝑦 ∈ ℝ* ) |
| 18 |
|
elioopnf |
⊢ ( 𝑦 ∈ ℝ* → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ) ) ) |
| 19 |
17 18
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ) ) ) |
| 20 |
13
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ) |
| 21 |
20
|
ad2ant2rl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ) |
| 22 |
21
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ) ) ) |
| 23 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 24 |
23
|
ad2ant2rl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 25 |
24
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) ) |
| 26 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝑧 ∈ 𝐴 ) |
| 27 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐴 ∈ dom vol ) |
| 28 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐵 ∈ ℝ ) |
| 29 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ ℝ ) |
| 30 |
29
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐹 Fn 𝐴 ) |
| 31 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 32 |
27 28 30 31
|
ofc1 |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) |
| 33 |
26 32
|
mpdan |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) |
| 34 |
33
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ 𝑦 < ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 35 |
33 21
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
| 36 |
16 35
|
ltnegd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ↔ - ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < - 𝑦 ) ) |
| 37 |
28
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐵 ∈ ℂ ) |
| 38 |
24
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 39 |
37 38
|
mulneg1d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) = - ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) |
| 40 |
39
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < - 𝑦 ↔ - ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < - 𝑦 ) ) |
| 41 |
16
|
renegcld |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → - 𝑦 ∈ ℝ ) |
| 42 |
28
|
renegcld |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → - 𝐵 ∈ ℝ ) |
| 43 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐵 < 0 ) |
| 44 |
28
|
lt0neg1d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐵 < 0 ↔ 0 < - 𝐵 ) ) |
| 45 |
43 44
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 0 < - 𝐵 ) |
| 46 |
|
ltmuldiv2 |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ - 𝑦 ∈ ℝ ∧ ( - 𝐵 ∈ ℝ ∧ 0 < - 𝐵 ) ) → ( ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < - 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) < ( - 𝑦 / - 𝐵 ) ) ) |
| 47 |
24 41 42 45 46
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < - 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) < ( - 𝑦 / - 𝐵 ) ) ) |
| 48 |
36 40 47
|
3bitr2rd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) < ( - 𝑦 / - 𝐵 ) ↔ 𝑦 < ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 49 |
16
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝑦 ∈ ℂ ) |
| 50 |
43
|
lt0ne0d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐵 ≠ 0 ) |
| 51 |
49 37 50
|
div2negd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( - 𝑦 / - 𝐵 ) = ( 𝑦 / 𝐵 ) ) |
| 52 |
51
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) < ( - 𝑦 / - 𝐵 ) ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) |
| 53 |
34 48 52
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) |
| 54 |
16 28 50
|
redivcld |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 / 𝐵 ) ∈ ℝ ) |
| 55 |
54
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 / 𝐵 ) ∈ ℝ* ) |
| 56 |
|
elioomnf |
⊢ ( ( 𝑦 / 𝐵 ) ∈ ℝ* → ( ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) ) |
| 57 |
55 56
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) ) |
| 58 |
25 53 57
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
| 59 |
19 22 58
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
| 60 |
59
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
| 61 |
60
|
pm5.32da |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) ) |
| 62 |
13
|
ffnd |
⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) Fn 𝐴 ) |
| 63 |
62
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) Fn 𝐴 ) |
| 64 |
|
elpreima |
⊢ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) Fn 𝐴 → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) |
| 65 |
63 64
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) |
| 66 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 67 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → 𝐹 Fn 𝐴 ) |
| 68 |
|
elpreima |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑧 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) ) |
| 69 |
67 68
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) ) |
| 70 |
61 65 69
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) ↔ 𝑧 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) ) |
| 71 |
70
|
eqrdv |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) = ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
| 72 |
|
mbfima |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ∈ dom vol ) |
| 73 |
1 3 72
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ∈ dom vol ) |
| 74 |
73
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ∈ dom vol ) |
| 75 |
71 74
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) |
| 76 |
|
elioomnf |
⊢ ( 𝑦 ∈ ℝ* → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ) ) ) |
| 77 |
17 76
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ) ) ) |
| 78 |
21
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ) ) ) |
| 79 |
24
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 80 |
33
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ↔ ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ) ) |
| 81 |
39
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( - 𝑦 < ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ↔ - 𝑦 < - ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 82 |
51
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( - 𝑦 / - 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) |
| 83 |
|
ltdivmul |
⊢ ( ( - 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( - 𝐵 ∈ ℝ ∧ 0 < - 𝐵 ) ) → ( ( - 𝑦 / - 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ - 𝑦 < ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 84 |
41 24 42 45 83
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( - 𝑦 / - 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ - 𝑦 < ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 85 |
82 84
|
bitr3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ - 𝑦 < ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 86 |
35 16
|
ltnegd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ↔ - 𝑦 < - ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 87 |
81 85 86
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ) ) |
| 88 |
80 87
|
bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ↔ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) |
| 89 |
|
elioopnf |
⊢ ( ( 𝑦 / 𝐵 ) ∈ ℝ* → ( ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 90 |
55 89
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 91 |
79 88 90
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
| 92 |
77 78 91
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
| 93 |
92
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
| 94 |
93
|
pm5.32da |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) ) |
| 95 |
|
elpreima |
⊢ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) Fn 𝐴 → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) |
| 96 |
63 95
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) |
| 97 |
|
elpreima |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑧 ∈ ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) ) |
| 98 |
67 97
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) ) |
| 99 |
94 96 98
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) ↔ 𝑧 ∈ ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) ) |
| 100 |
99
|
eqrdv |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) = ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
| 101 |
|
mbfima |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ∈ dom vol ) |
| 102 |
1 3 101
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ∈ dom vol ) |
| 103 |
102
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ∈ dom vol ) |
| 104 |
100 103
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) |
| 105 |
14 15 75 104
|
ismbf2d |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ∈ MblFn ) |
| 106 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → 𝐴 ∈ dom vol ) |
| 107 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → 𝐹 : 𝐴 ⟶ ℝ ) |
| 108 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → 𝐵 = 0 ) |
| 109 |
|
0cn |
⊢ 0 ∈ ℂ |
| 110 |
108 109
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → 𝐵 ∈ ℂ ) |
| 111 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → 0 ∈ ℂ ) |
| 112 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐵 = 0 ) ∧ 𝑥 ∈ ℝ ) → 𝐵 = 0 ) |
| 113 |
112
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝐵 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( 𝐵 · 𝑥 ) = ( 0 · 𝑥 ) ) |
| 114 |
|
mul02lem2 |
⊢ ( 𝑥 ∈ ℝ → ( 0 · 𝑥 ) = 0 ) |
| 115 |
114
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐵 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( 0 · 𝑥 ) = 0 ) |
| 116 |
113 115
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐵 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( 𝐵 · 𝑥 ) = 0 ) |
| 117 |
106 107 110 111 116
|
caofid2 |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) = ( 𝐴 × { 0 } ) ) |
| 118 |
|
mbfconst |
⊢ ( ( 𝐴 ∈ dom vol ∧ 0 ∈ ℂ ) → ( 𝐴 × { 0 } ) ∈ MblFn ) |
| 119 |
106 109 118
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( 𝐴 × { 0 } ) ∈ MblFn ) |
| 120 |
117 119
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ∈ MblFn ) |
| 121 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) : 𝐴 ⟶ ℝ ) |
| 122 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐴 ∈ dom vol ) |
| 123 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝑦 ∈ ℝ ) |
| 124 |
123
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝑦 ∈ ℝ* ) |
| 125 |
124 18
|
syl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ) ) ) |
| 126 |
20
|
ad2ant2rl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ) |
| 127 |
126
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ) ) ) |
| 128 |
23
|
ad2ant2rl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 129 |
128
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 130 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 131 |
11 2 66 130
|
ofc1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) |
| 132 |
131
|
ad2ant2rl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) |
| 133 |
132
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ 𝑦 < ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 134 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐵 ∈ ℝ ) |
| 135 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 0 < 𝐵 ) |
| 136 |
|
ltdivmul |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ 𝑦 < ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 137 |
123 128 134 135 136
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ 𝑦 < ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 138 |
133 137
|
bitr4d |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) |
| 139 |
134 135
|
elrpd |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐵 ∈ ℝ+ ) |
| 140 |
123 139
|
rerpdivcld |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 / 𝐵 ) ∈ ℝ ) |
| 141 |
140
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 / 𝐵 ) ∈ ℝ* ) |
| 142 |
141 89
|
syl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 143 |
129 138 142
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
| 144 |
125 127 143
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
| 145 |
144
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
| 146 |
145
|
pm5.32da |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) ) |
| 147 |
62
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) Fn 𝐴 ) |
| 148 |
147 64
|
syl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) |
| 149 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → 𝐹 Fn 𝐴 ) |
| 150 |
149 97
|
syl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) ) |
| 151 |
146 148 150
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) ↔ 𝑧 ∈ ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) ) |
| 152 |
151
|
eqrdv |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) = ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
| 153 |
102
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ∈ dom vol ) |
| 154 |
152 153
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) |
| 155 |
124 76
|
syl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ) ) ) |
| 156 |
126
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ) ) ) |
| 157 |
|
ltmuldiv2 |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) |
| 158 |
128 123 134 135 157
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) |
| 159 |
132
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ↔ ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ) ) |
| 160 |
141 56
|
syl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) ) |
| 161 |
128 160
|
mpbirand |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) |
| 162 |
158 159 161
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
| 163 |
155 156 162
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
| 164 |
163
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
| 165 |
164
|
pm5.32da |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) ) |
| 166 |
147 95
|
syl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) |
| 167 |
149 68
|
syl |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) ) |
| 168 |
165 166 167
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) ↔ 𝑧 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) ) |
| 169 |
168
|
eqrdv |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) = ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
| 170 |
73
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ∈ dom vol ) |
| 171 |
169 170
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) |
| 172 |
121 122 154 171
|
ismbf2d |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ∈ MblFn ) |
| 173 |
|
0re |
⊢ 0 ∈ ℝ |
| 174 |
|
lttri4 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵 ) ) |
| 175 |
2 173 174
|
sylancl |
⊢ ( 𝜑 → ( 𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵 ) ) |
| 176 |
105 120 172 175
|
mpjao3dan |
⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ∈ MblFn ) |