| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfsup.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
mbfsup.2 |
⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ) |
| 3 |
|
mbfsup.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 |
|
mbfsup.4 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 5 |
|
mbfsup.5 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) ) → 𝐵 ∈ ℝ ) |
| 6 |
|
mbfsup.6 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝐵 ≤ 𝑦 ) |
| 7 |
5
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 8 |
7
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
| 9 |
8
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ ) |
| 10 |
9
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⊆ ℝ ) |
| 11 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 12 |
3 11
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 13 |
12 1
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ∈ 𝑍 ) |
| 15 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) = ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) |
| 16 |
15 8
|
dmmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → dom ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) = 𝑍 ) |
| 17 |
14 16
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ∈ dom ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ) |
| 18 |
17
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → dom ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ≠ ∅ ) |
| 19 |
|
dm0rn0 |
⊢ ( dom ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) = ∅ ↔ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) = ∅ ) |
| 20 |
19
|
necon3bii |
⊢ ( dom ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ≠ ∅ ↔ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ≠ ∅ ) |
| 21 |
18 20
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ≠ ∅ ) |
| 22 |
9
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) Fn 𝑍 ) |
| 23 |
|
breq1 |
⊢ ( 𝑧 = ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) → ( 𝑧 ≤ 𝑦 ↔ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ≤ 𝑦 ) ) |
| 24 |
23
|
ralrn |
⊢ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) Fn 𝑍 → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ↔ ∀ 𝑚 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ≤ 𝑦 ) ) |
| 25 |
22 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ↔ ∀ 𝑚 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ≤ 𝑦 ) ) |
| 26 |
|
nffvmpt1 |
⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) |
| 27 |
|
nfcv |
⊢ Ⅎ 𝑛 ≤ |
| 28 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑦 |
| 29 |
26 27 28
|
nfbr |
⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ≤ 𝑦 |
| 30 |
|
nfv |
⊢ Ⅎ 𝑚 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ≤ 𝑦 |
| 31 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) = ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) |
| 32 |
31
|
breq1d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ≤ 𝑦 ↔ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ≤ 𝑦 ) ) |
| 33 |
29 30 32
|
cbvralw |
⊢ ( ∀ 𝑚 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ≤ 𝑦 ↔ ∀ 𝑛 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ≤ 𝑦 ) |
| 34 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) |
| 35 |
15
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝐵 ∈ ℝ ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = 𝐵 ) |
| 36 |
34 8 35
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = 𝐵 ) |
| 37 |
36
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ≤ 𝑦 ↔ 𝐵 ≤ 𝑦 ) ) |
| 38 |
37
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑛 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ≤ 𝑦 ↔ ∀ 𝑛 ∈ 𝑍 𝐵 ≤ 𝑦 ) ) |
| 39 |
33 38
|
bitrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑚 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ≤ 𝑦 ↔ ∀ 𝑛 ∈ 𝑍 𝐵 ≤ 𝑦 ) ) |
| 40 |
25 39
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ↔ ∀ 𝑛 ∈ 𝑍 𝐵 ≤ 𝑦 ) ) |
| 41 |
40
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝐵 ≤ 𝑦 ) ) |
| 42 |
6 41
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) |
| 43 |
10 21 42
|
suprcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → sup ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ∈ ℝ ) |
| 44 |
43 2
|
fmptd |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ ℝ ) |
| 45 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 46 |
|
ltso |
⊢ < Or ℝ |
| 47 |
46
|
supex |
⊢ sup ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ∈ V |
| 48 |
2
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ sup ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ∈ V ) → ( 𝐺 ‘ 𝑥 ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ) |
| 49 |
45 47 48
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ) |
| 50 |
49
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑡 < ( 𝐺 ‘ 𝑥 ) ↔ 𝑡 < sup ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ) ) |
| 51 |
10 21 42
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⊆ ℝ ∧ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ) |
| 52 |
51
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⊆ ℝ ∧ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ) |
| 53 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑡 ∈ ℝ ) |
| 54 |
|
suprlub |
⊢ ( ( ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⊆ ℝ ∧ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ∧ 𝑡 ∈ ℝ ) → ( 𝑡 < sup ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ↔ ∃ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑡 < 𝑧 ) ) |
| 55 |
52 53 54
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑡 < sup ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ↔ ∃ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑡 < 𝑧 ) ) |
| 56 |
22
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) Fn 𝑍 ) |
| 57 |
|
breq2 |
⊢ ( 𝑧 = ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) → ( 𝑡 < 𝑧 ↔ 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ) ) |
| 58 |
57
|
rexrn |
⊢ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) Fn 𝑍 → ( ∃ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑡 < 𝑧 ↔ ∃ 𝑚 ∈ 𝑍 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ) ) |
| 59 |
56 58
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑡 < 𝑧 ↔ ∃ 𝑚 ∈ 𝑍 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ) ) |
| 60 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑡 |
| 61 |
|
nfcv |
⊢ Ⅎ 𝑛 < |
| 62 |
60 61 26
|
nfbr |
⊢ Ⅎ 𝑛 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) |
| 63 |
|
nfv |
⊢ Ⅎ 𝑚 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) |
| 64 |
31
|
breq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ↔ 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) ) |
| 65 |
62 63 64
|
cbvrexw |
⊢ ( ∃ 𝑚 ∈ 𝑍 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) |
| 66 |
15
|
fvmpt2i |
⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( I ‘ 𝐵 ) ) |
| 67 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 68 |
67
|
fvmpt2i |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = ( I ‘ 𝐵 ) ) |
| 69 |
68
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = ( I ‘ 𝐵 ) ) |
| 70 |
69
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( I ‘ 𝐵 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
| 71 |
66 70
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
| 72 |
71
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ↔ 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) |
| 73 |
72
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) |
| 74 |
73
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) |
| 75 |
65 74
|
bitrid |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑚 ∈ 𝑍 𝑡 < ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑚 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) |
| 76 |
59 75
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) 𝑡 < 𝑧 ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) |
| 77 |
50 55 76
|
3bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑡 < ( 𝐺 ‘ 𝑥 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) |
| 78 |
77
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ∀ 𝑥 ∈ 𝐴 ( 𝑡 < ( 𝐺 ‘ 𝑥 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) |
| 79 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑡 < ( 𝐺 ‘ 𝑥 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
| 80 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑡 |
| 81 |
|
nfcv |
⊢ Ⅎ 𝑥 < |
| 82 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ sup ( ran ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) , ℝ , < ) ) |
| 83 |
2 82
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐺 |
| 84 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
| 85 |
83 84
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐺 ‘ 𝑧 ) |
| 86 |
80 81 85
|
nfbr |
⊢ Ⅎ 𝑥 𝑡 < ( 𝐺 ‘ 𝑧 ) |
| 87 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
| 88 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) |
| 89 |
80 81 88
|
nfbr |
⊢ Ⅎ 𝑥 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) |
| 90 |
87 89
|
nfrexw |
⊢ Ⅎ 𝑥 ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) |
| 91 |
86 90
|
nfbi |
⊢ Ⅎ 𝑥 ( 𝑡 < ( 𝐺 ‘ 𝑧 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) |
| 92 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 93 |
92
|
breq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑡 < ( 𝐺 ‘ 𝑥 ) ↔ 𝑡 < ( 𝐺 ‘ 𝑧 ) ) ) |
| 94 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) |
| 95 |
94
|
breq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) |
| 96 |
95
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) |
| 97 |
93 96
|
bibi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑡 < ( 𝐺 ‘ 𝑥 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ↔ ( 𝑡 < ( 𝐺 ‘ 𝑧 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) ) |
| 98 |
79 91 97
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑡 < ( 𝐺 ‘ 𝑥 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑡 < ( 𝐺 ‘ 𝑧 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) |
| 99 |
78 98
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ∀ 𝑧 ∈ 𝐴 ( 𝑡 < ( 𝐺 ‘ 𝑧 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) |
| 100 |
99
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑡 < ( 𝐺 ‘ 𝑧 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) |
| 101 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → 𝐺 : 𝐴 ⟶ ℝ ) |
| 102 |
101
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑧 ) ∈ ℝ ) |
| 103 |
|
rexr |
⊢ ( 𝑡 ∈ ℝ → 𝑡 ∈ ℝ* ) |
| 104 |
103
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → 𝑡 ∈ ℝ* ) |
| 105 |
|
elioopnf |
⊢ ( 𝑡 ∈ ℝ* → ( ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ↔ ( ( 𝐺 ‘ 𝑧 ) ∈ ℝ ∧ 𝑡 < ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 106 |
104 105
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ↔ ( ( 𝐺 ‘ 𝑧 ) ∈ ℝ ∧ 𝑡 < ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 107 |
102 106
|
mpbirand |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ↔ 𝑡 < ( 𝐺 ‘ 𝑧 ) ) ) |
| 108 |
104
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑡 ∈ ℝ* ) |
| 109 |
|
elioopnf |
⊢ ( 𝑡 ∈ ℝ* → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ↔ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) ) |
| 110 |
108 109
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ↔ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) ) |
| 111 |
7
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) |
| 112 |
111
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ℝ ) |
| 113 |
112
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ↔ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) ) |
| 114 |
113
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ↔ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) ) |
| 115 |
114
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ↔ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) ) |
| 116 |
110 115
|
bitr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ↔ 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) |
| 117 |
116
|
rexbidva |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ∃ 𝑛 ∈ 𝑍 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ↔ ∃ 𝑛 ∈ 𝑍 𝑡 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ) ) |
| 118 |
100 107 117
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ↔ ∃ 𝑛 ∈ 𝑍 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ) |
| 119 |
118
|
pm5.32da |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( ( 𝑧 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ∃ 𝑛 ∈ 𝑍 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ) ) |
| 120 |
44
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
| 121 |
120
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → 𝐺 Fn 𝐴 ) |
| 122 |
|
elpreima |
⊢ ( 𝐺 Fn 𝐴 → ( 𝑧 ∈ ( ◡ 𝐺 “ ( 𝑡 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ) ) |
| 123 |
121 122
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ 𝐺 “ ( 𝑡 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ) ) |
| 124 |
|
eliun |
⊢ ( 𝑧 ∈ ∪ 𝑛 ∈ 𝑍 ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ↔ ∃ 𝑛 ∈ 𝑍 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ) |
| 125 |
111
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
| 126 |
|
elpreima |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 → ( 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ) ) |
| 127 |
125 126
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ) ) |
| 128 |
127
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ 𝑍 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ↔ ∃ 𝑛 ∈ 𝑍 ( 𝑧 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ) ) |
| 129 |
128
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( ∃ 𝑛 ∈ 𝑍 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ↔ ∃ 𝑛 ∈ 𝑍 ( 𝑧 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ) ) |
| 130 |
|
r19.42v |
⊢ ( ∃ 𝑛 ∈ 𝑍 ( 𝑧 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ∃ 𝑛 ∈ 𝑍 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ) |
| 131 |
129 130
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( ∃ 𝑛 ∈ 𝑍 𝑧 ∈ ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ∃ 𝑛 ∈ 𝑍 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ) ) |
| 132 |
124 131
|
bitrid |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( 𝑧 ∈ ∪ 𝑛 ∈ 𝑍 ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ∃ 𝑛 ∈ 𝑍 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ∈ ( 𝑡 (,) +∞ ) ) ) ) |
| 133 |
119 123 132
|
3bitr4d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ 𝐺 “ ( 𝑡 (,) +∞ ) ) ↔ 𝑧 ∈ ∪ 𝑛 ∈ 𝑍 ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ) ) |
| 134 |
133
|
eqrdv |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( ◡ 𝐺 “ ( 𝑡 (,) +∞ ) ) = ∪ 𝑛 ∈ 𝑍 ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ) |
| 135 |
|
zex |
⊢ ℤ ∈ V |
| 136 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
| 137 |
|
ssdomg |
⊢ ( ℤ ∈ V → ( ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ → ( ℤ≥ ‘ 𝑀 ) ≼ ℤ ) ) |
| 138 |
135 136 137
|
mp2 |
⊢ ( ℤ≥ ‘ 𝑀 ) ≼ ℤ |
| 139 |
1 138
|
eqbrtri |
⊢ 𝑍 ≼ ℤ |
| 140 |
|
znnen |
⊢ ℤ ≈ ℕ |
| 141 |
|
domentr |
⊢ ( ( 𝑍 ≼ ℤ ∧ ℤ ≈ ℕ ) → 𝑍 ≼ ℕ ) |
| 142 |
139 140 141
|
mp2an |
⊢ 𝑍 ≼ ℕ |
| 143 |
|
mbfima |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ∈ dom vol ) |
| 144 |
4 111 143
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ∈ dom vol ) |
| 145 |
144
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ∈ dom vol ) |
| 146 |
145
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ∈ dom vol ) |
| 147 |
|
iunmbl2 |
⊢ ( ( 𝑍 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ∈ dom vol ) → ∪ 𝑛 ∈ 𝑍 ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ∈ dom vol ) |
| 148 |
142 146 147
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ∪ 𝑛 ∈ 𝑍 ( ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ ( 𝑡 (,) +∞ ) ) ∈ dom vol ) |
| 149 |
134 148
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( ◡ 𝐺 “ ( 𝑡 (,) +∞ ) ) ∈ dom vol ) |
| 150 |
44 149
|
ismbf3d |
⊢ ( 𝜑 → 𝐺 ∈ MblFn ) |