Metamath Proof Explorer


Theorem uspgrimprop

Description: An isomorphism of simple pseudographs is a bijection between their vertices that preserves adjacency, i.e. there is an edge in one graph connecting one or two vertices iff there is an edge in the other graph connecting the vertices which are the images of the vertices. (Contributed by AV, 27-Apr-2025)

Ref Expression
Hypotheses isusgrim.v 𝑉 = ( Vtx ‘ 𝐺 )
isusgrim.w 𝑊 = ( Vtx ‘ 𝐻 )
isusgrim.e 𝐸 = ( Edg ‘ 𝐺 )
isusgrim.d 𝐷 = ( Edg ‘ 𝐻 )
Assertion uspgrimprop ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ) )

Proof

Step Hyp Ref Expression
1 isusgrim.v 𝑉 = ( Vtx ‘ 𝐺 )
2 isusgrim.w 𝑊 = ( Vtx ‘ 𝐻 )
3 isusgrim.e 𝐸 = ( Edg ‘ 𝐺 )
4 isusgrim.d 𝐷 = ( Edg ‘ 𝐻 )
5 1 2 3 4 isuspgrim0 ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) )
6 5 3expa ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) )
7 simprl ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) → 𝐹 : 𝑉1-1-onto𝑊 )
8 imaeq2 ( 𝑒 = { 𝑥 , 𝑦 } → ( 𝐹𝑒 ) = ( 𝐹 “ { 𝑥 , 𝑦 } ) )
9 eqidd ( ( 𝐹 : 𝑉1-1-onto𝑊 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) = ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) )
10 simpr ( ( 𝐹 : 𝑉1-1-onto𝑊 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → { 𝑥 , 𝑦 } ∈ 𝐸 )
11 f1ofun ( 𝐹 : 𝑉1-1-onto𝑊 → Fun 𝐹 )
12 zfpair2 { 𝑥 , 𝑦 } ∈ V
13 funimaexg ( ( Fun 𝐹 ∧ { 𝑥 , 𝑦 } ∈ V ) → ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ V )
14 11 12 13 sylancl ( 𝐹 : 𝑉1-1-onto𝑊 → ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ V )
15 14 adantr ( ( 𝐹 : 𝑉1-1-onto𝑊 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ V )
16 8 9 10 15 fvmptd4 ( ( 𝐹 : 𝑉1-1-onto𝑊 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) ‘ { 𝑥 , 𝑦 } ) = ( 𝐹 “ { 𝑥 , 𝑦 } ) )
17 16 ex ( 𝐹 : 𝑉1-1-onto𝑊 → ( { 𝑥 , 𝑦 } ∈ 𝐸 → ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) ‘ { 𝑥 , 𝑦 } ) = ( 𝐹 “ { 𝑥 , 𝑦 } ) ) )
18 17 adantr ( ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 → ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) ‘ { 𝑥 , 𝑦 } ) = ( 𝐹 “ { 𝑥 , 𝑦 } ) ) )
19 18 ad2antlr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 → ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) ‘ { 𝑥 , 𝑦 } ) = ( 𝐹 “ { 𝑥 , 𝑦 } ) ) )
20 19 imp ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) ‘ { 𝑥 , 𝑦 } ) = ( 𝐹 “ { 𝑥 , 𝑦 } ) )
21 f1of ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 → ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸𝐷 )
22 21 ad2antll ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) → ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸𝐷 )
23 ax-1 ( ∅ ∉ 𝐷 → ( 𝐻 ∈ USPGraph → ∅ ∉ 𝐷 ) )
24 nnel ( ¬ ∅ ∉ 𝐷 ↔ ∅ ∈ 𝐷 )
25 uspgruhgr ( 𝐻 ∈ USPGraph → 𝐻 ∈ UHGraph )
26 uhgredgn0 ( ( 𝐻 ∈ UHGraph ∧ ∅ ∈ ( Edg ‘ 𝐻 ) ) → ∅ ∈ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) )
27 25 26 sylan ( ( 𝐻 ∈ USPGraph ∧ ∅ ∈ ( Edg ‘ 𝐻 ) ) → ∅ ∈ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) )
28 neldifsn ¬ ∅ ∈ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } )
29 28 pm2.21i ( ∅ ∈ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) → ∅ ∉ 𝐷 )
30 27 29 syl ( ( 𝐻 ∈ USPGraph ∧ ∅ ∈ ( Edg ‘ 𝐻 ) ) → ∅ ∉ 𝐷 )
31 30 expcom ( ∅ ∈ ( Edg ‘ 𝐻 ) → ( 𝐻 ∈ USPGraph → ∅ ∉ 𝐷 ) )
32 31 4 eleq2s ( ∅ ∈ 𝐷 → ( 𝐻 ∈ USPGraph → ∅ ∉ 𝐷 ) )
33 24 32 sylbi ( ¬ ∅ ∉ 𝐷 → ( 𝐻 ∈ USPGraph → ∅ ∉ 𝐷 ) )
34 23 33 pm2.61i ( 𝐻 ∈ USPGraph → ∅ ∉ 𝐷 )
35 34 ad2antlr ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) → ∅ ∉ 𝐷 )
36 22 35 jca ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) → ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸𝐷 ∧ ∅ ∉ 𝐷 ) )
37 36 adantr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸𝐷 ∧ ∅ ∉ 𝐷 ) )
38 feldmfvelcdm ( ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸𝐷 ∧ ∅ ∉ 𝐷 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) ‘ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) )
39 37 38 syl ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) ‘ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) )
40 39 biimpa ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) ‘ { 𝑥 , 𝑦 } ) ∈ 𝐷 )
41 20 40 eqeltrrd ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 )
42 imaeq2 ( 𝑧 = ( 𝐹 “ { 𝑥 , 𝑦 } ) → ( 𝐹𝑧 ) = ( 𝐹 “ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) )
43 imaeq2 ( 𝑒 = 𝑦 → ( 𝐹𝑒 ) = ( 𝐹𝑦 ) )
44 43 cbvmptv ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) = ( 𝑦𝐸 ↦ ( 𝐹𝑦 ) )
45 f1oeq1 ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) = ( 𝑦𝐸 ↦ ( 𝐹𝑦 ) ) → ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ↔ ( 𝑦𝐸 ↦ ( 𝐹𝑦 ) ) : 𝐸1-1-onto𝐷 ) )
46 44 45 mp1i ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) → ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ↔ ( 𝑦𝐸 ↦ ( 𝐹𝑦 ) ) : 𝐸1-1-onto𝐷 ) )
47 imaeq2 ( 𝑒 = 𝑥 → ( 𝐹𝑒 ) = ( 𝐹𝑥 ) )
48 47 cbvmptv ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) = ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) )
49 simpr ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) → 𝐹 : 𝑉1-1-onto𝑊 )
50 49 adantr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑦𝐸 ↦ ( 𝐹𝑦 ) ) : 𝐸1-1-onto𝐷 ) → 𝐹 : 𝑉1-1-onto𝑊 )
51 uspgruhgr ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph )
52 uhgredgss ( 𝐺 ∈ UHGraph → ( Edg ‘ 𝐺 ) ⊆ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) )
53 difss2 ( ( Edg ‘ 𝐺 ) ⊆ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → ( Edg ‘ 𝐺 ) ⊆ 𝒫 ( Vtx ‘ 𝐺 ) )
54 51 52 53 3syl ( 𝐺 ∈ USPGraph → ( Edg ‘ 𝐺 ) ⊆ 𝒫 ( Vtx ‘ 𝐺 ) )
55 1 pweqi 𝒫 𝑉 = 𝒫 ( Vtx ‘ 𝐺 )
56 54 3 55 3sstr4g ( 𝐺 ∈ USPGraph → 𝐸 ⊆ 𝒫 𝑉 )
57 56 adantr ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → 𝐸 ⊆ 𝒫 𝑉 )
58 57 ad2antrr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑦𝐸 ↦ ( 𝐹𝑦 ) ) : 𝐸1-1-onto𝐷 ) → 𝐸 ⊆ 𝒫 𝑉 )
59 f1ofo ( ( 𝑦𝐸 ↦ ( 𝐹𝑦 ) ) : 𝐸1-1-onto𝐷 → ( 𝑦𝐸 ↦ ( 𝐹𝑦 ) ) : 𝐸onto𝐷 )
60 44 rneqi ran ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) = ran ( 𝑦𝐸 ↦ ( 𝐹𝑦 ) )
61 forn ( ( 𝑦𝐸 ↦ ( 𝐹𝑦 ) ) : 𝐸onto𝐷 → ran ( 𝑦𝐸 ↦ ( 𝐹𝑦 ) ) = 𝐷 )
62 60 61 eqtrid ( ( 𝑦𝐸 ↦ ( 𝐹𝑦 ) ) : 𝐸onto𝐷 → ran ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) = 𝐷 )
63 59 62 syl ( ( 𝑦𝐸 ↦ ( 𝐹𝑦 ) ) : 𝐸1-1-onto𝐷 → ran ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) = 𝐷 )
64 63 adantl ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑦𝐸 ↦ ( 𝐹𝑦 ) ) : 𝐸1-1-onto𝐷 ) → ran ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) = 𝐷 )
65 uhgredgss ( 𝐻 ∈ UHGraph → ( Edg ‘ 𝐻 ) ⊆ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) )
66 difss2 ( ( Edg ‘ 𝐻 ) ⊆ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) → ( Edg ‘ 𝐻 ) ⊆ 𝒫 ( Vtx ‘ 𝐻 ) )
67 25 65 66 3syl ( 𝐻 ∈ USPGraph → ( Edg ‘ 𝐻 ) ⊆ 𝒫 ( Vtx ‘ 𝐻 ) )
68 2 pweqi 𝒫 𝑊 = 𝒫 ( Vtx ‘ 𝐻 )
69 67 4 68 3sstr4g ( 𝐻 ∈ USPGraph → 𝐷 ⊆ 𝒫 𝑊 )
70 69 adantl ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → 𝐷 ⊆ 𝒫 𝑊 )
71 70 ad2antrr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑦𝐸 ↦ ( 𝐹𝑦 ) ) : 𝐸1-1-onto𝐷 ) → 𝐷 ⊆ 𝒫 𝑊 )
72 64 71 eqsstrd ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑦𝐸 ↦ ( 𝐹𝑦 ) ) : 𝐸1-1-onto𝐷 ) → ran ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) ⊆ 𝒫 𝑊 )
73 1 fvexi 𝑉 ∈ V
74 73 a1i ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑦𝐸 ↦ ( 𝐹𝑦 ) ) : 𝐸1-1-onto𝐷 ) → 𝑉 ∈ V )
75 48 50 58 72 74 mptcnfimad ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) ∧ ( 𝑦𝐸 ↦ ( 𝐹𝑦 ) ) : 𝐸1-1-onto𝐷 ) → ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) = ( 𝑧 ∈ ran ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) ↦ ( 𝐹𝑧 ) ) )
76 75 ex ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) → ( ( 𝑦𝐸 ↦ ( 𝐹𝑦 ) ) : 𝐸1-1-onto𝐷 ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) = ( 𝑧 ∈ ran ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) ↦ ( 𝐹𝑧 ) ) ) )
77 46 76 sylbid ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉1-1-onto𝑊 ) → ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) = ( 𝑧 ∈ ran ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) ↦ ( 𝐹𝑧 ) ) ) )
78 77 impr ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) → ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) = ( 𝑧 ∈ ran ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) ↦ ( 𝐹𝑧 ) ) )
79 78 ad2antrr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) ∧ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) → ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) = ( 𝑧 ∈ ran ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) ↦ ( 𝐹𝑧 ) ) )
80 f1ofo ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 → ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸onto𝐷 )
81 forn ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸onto𝐷 → ran ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) = 𝐷 )
82 81 eqcomd ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸onto𝐷𝐷 = ran ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) )
83 80 82 syl ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷𝐷 = ran ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) )
84 83 adantl ( ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) → 𝐷 = ran ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) )
85 84 ad2antlr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) → 𝐷 = ran ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) )
86 85 eleq2d ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ↔ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ ran ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) ) )
87 86 biimpa ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) ∧ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) → ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ ran ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) )
88 dff1o2 ( 𝐹 : 𝑉1-1-onto𝑊 ↔ ( 𝐹 Fn 𝑉 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝑊 ) )
89 88 simp2bi ( 𝐹 : 𝑉1-1-onto𝑊 → Fun 𝐹 )
90 89 adantr ( ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) → Fun 𝐹 )
91 90 ad2antlr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) → Fun 𝐹 )
92 funimaexg ( ( Fun 𝐹 ∧ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) → ( 𝐹 “ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) ∈ V )
93 91 92 sylan ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) ∧ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) → ( 𝐹 “ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) ∈ V )
94 42 79 87 93 fvmptd4 ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) ∧ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) → ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) ‘ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) = ( 𝐹 “ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) )
95 simplrr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 )
96 f1ocnvdm ( ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ∧ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) → ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) ‘ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) ∈ 𝐸 )
97 95 96 sylan ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) ∧ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) → ( ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) ‘ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) ∈ 𝐸 )
98 94 97 eqeltrrd ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) ∧ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) → ( 𝐹 “ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) ∈ 𝐸 )
99 f1of1 ( 𝐹 : 𝑉1-1-onto𝑊𝐹 : 𝑉1-1𝑊 )
100 99 ad2antrl ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) → 𝐹 : 𝑉1-1𝑊 )
101 prssi ( ( 𝑥𝑉𝑦𝑉 ) → { 𝑥 , 𝑦 } ⊆ 𝑉 )
102 f1imacnv ( ( 𝐹 : 𝑉1-1𝑊 ∧ { 𝑥 , 𝑦 } ⊆ 𝑉 ) → ( 𝐹 “ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) = { 𝑥 , 𝑦 } )
103 100 101 102 syl2an ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( 𝐹 “ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) = { 𝑥 , 𝑦 } )
104 103 eqcomd ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) → { 𝑥 , 𝑦 } = ( 𝐹 “ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) )
105 104 eleq1d ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ ( 𝐹 “ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) ∈ 𝐸 ) )
106 105 adantr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) ∧ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ ( 𝐹 “ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) ∈ 𝐸 ) )
107 98 106 mpbird ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) ∧ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) → { 𝑥 , 𝑦 } ∈ 𝐸 )
108 41 107 impbida ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) )
109 f1ofn ( 𝐹 : 𝑉1-1-onto𝑊𝐹 Fn 𝑉 )
110 109 ad2antrl ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) → 𝐹 Fn 𝑉 )
111 110 anim1i ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( 𝐹 Fn 𝑉 ∧ ( 𝑥𝑉𝑦𝑉 ) ) )
112 3anass ( ( 𝐹 Fn 𝑉𝑥𝑉𝑦𝑉 ) ↔ ( 𝐹 Fn 𝑉 ∧ ( 𝑥𝑉𝑦𝑉 ) ) )
113 111 112 sylibr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( 𝐹 Fn 𝑉𝑥𝑉𝑦𝑉 ) )
114 fnimapr ( ( 𝐹 Fn 𝑉𝑥𝑉𝑦𝑉 ) → ( 𝐹 “ { 𝑥 , 𝑦 } ) = { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } )
115 113 114 syl ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( 𝐹 “ { 𝑥 , 𝑦 } ) = { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } )
116 115 eleq1d ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) )
117 108 116 bitrd ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) )
118 117 ralrimivva ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) → ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) )
119 7 118 jca ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) ) → ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) )
120 119 ex ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) → ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ) )
121 120 adantr ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ( 𝑒𝐸 ↦ ( 𝐹𝑒 ) ) : 𝐸1-1-onto𝐷 ) → ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ) )
122 6 121 sylbid ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ) )
123 122 syldbl2 ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) )
124 123 ex ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∀ 𝑥𝑉𝑦𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹𝑥 ) , ( 𝐹𝑦 ) } ∈ 𝐷 ) ) ) )