Step |
Hyp |
Ref |
Expression |
1 |
|
isusgrim.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
isusgrim.w |
⊢ 𝑊 = ( Vtx ‘ 𝐻 ) |
3 |
|
isusgrim.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
4 |
|
isusgrim.d |
⊢ 𝐷 = ( Edg ‘ 𝐻 ) |
5 |
1 2 3 4
|
isuspgrim0 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ) |
6 |
5
|
3expa |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ) |
7 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) |
8 |
|
imaeq2 |
⊢ ( 𝑒 = { 𝑥 , 𝑦 } → ( 𝐹 “ 𝑒 ) = ( 𝐹 “ { 𝑥 , 𝑦 } ) ) |
9 |
|
eqidd |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) = ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ) |
10 |
|
simpr |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → { 𝑥 , 𝑦 } ∈ 𝐸 ) |
11 |
|
f1ofun |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → Fun 𝐹 ) |
12 |
|
zfpair2 |
⊢ { 𝑥 , 𝑦 } ∈ V |
13 |
|
funimaexg |
⊢ ( ( Fun 𝐹 ∧ { 𝑥 , 𝑦 } ∈ V ) → ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ V ) |
14 |
11 12 13
|
sylancl |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ V ) |
15 |
14
|
adantr |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ V ) |
16 |
8 9 10 15
|
fvmptd4 |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ‘ { 𝑥 , 𝑦 } ) = ( 𝐹 “ { 𝑥 , 𝑦 } ) ) |
17 |
16
|
ex |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → ( { 𝑥 , 𝑦 } ∈ 𝐸 → ( ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ‘ { 𝑥 , 𝑦 } ) = ( 𝐹 “ { 𝑥 , 𝑦 } ) ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 → ( ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ‘ { 𝑥 , 𝑦 } ) = ( 𝐹 “ { 𝑥 , 𝑦 } ) ) ) |
19 |
18
|
ad2antlr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 → ( ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ‘ { 𝑥 , 𝑦 } ) = ( 𝐹 “ { 𝑥 , 𝑦 } ) ) ) |
20 |
19
|
imp |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ‘ { 𝑥 , 𝑦 } ) = ( 𝐹 “ { 𝑥 , 𝑦 } ) ) |
21 |
|
f1of |
⊢ ( ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 → ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 ⟶ 𝐷 ) |
22 |
21
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) → ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 ⟶ 𝐷 ) |
23 |
|
ax-1 |
⊢ ( ∅ ∉ 𝐷 → ( 𝐻 ∈ USPGraph → ∅ ∉ 𝐷 ) ) |
24 |
|
nnel |
⊢ ( ¬ ∅ ∉ 𝐷 ↔ ∅ ∈ 𝐷 ) |
25 |
|
uspgruhgr |
⊢ ( 𝐻 ∈ USPGraph → 𝐻 ∈ UHGraph ) |
26 |
|
uhgredgn0 |
⊢ ( ( 𝐻 ∈ UHGraph ∧ ∅ ∈ ( Edg ‘ 𝐻 ) ) → ∅ ∈ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) ) |
27 |
25 26
|
sylan |
⊢ ( ( 𝐻 ∈ USPGraph ∧ ∅ ∈ ( Edg ‘ 𝐻 ) ) → ∅ ∈ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) ) |
28 |
|
neldifsn |
⊢ ¬ ∅ ∈ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) |
29 |
28
|
pm2.21i |
⊢ ( ∅ ∈ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) → ∅ ∉ 𝐷 ) |
30 |
27 29
|
syl |
⊢ ( ( 𝐻 ∈ USPGraph ∧ ∅ ∈ ( Edg ‘ 𝐻 ) ) → ∅ ∉ 𝐷 ) |
31 |
30
|
expcom |
⊢ ( ∅ ∈ ( Edg ‘ 𝐻 ) → ( 𝐻 ∈ USPGraph → ∅ ∉ 𝐷 ) ) |
32 |
31 4
|
eleq2s |
⊢ ( ∅ ∈ 𝐷 → ( 𝐻 ∈ USPGraph → ∅ ∉ 𝐷 ) ) |
33 |
24 32
|
sylbi |
⊢ ( ¬ ∅ ∉ 𝐷 → ( 𝐻 ∈ USPGraph → ∅ ∉ 𝐷 ) ) |
34 |
23 33
|
pm2.61i |
⊢ ( 𝐻 ∈ USPGraph → ∅ ∉ 𝐷 ) |
35 |
34
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) → ∅ ∉ 𝐷 ) |
36 |
22 35
|
jca |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) → ( ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 ⟶ 𝐷 ∧ ∅ ∉ 𝐷 ) ) |
37 |
36
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 ⟶ 𝐷 ∧ ∅ ∉ 𝐷 ) ) |
38 |
|
feldmfvelcdm |
⊢ ( ( ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 ⟶ 𝐷 ∧ ∅ ∉ 𝐷 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ ( ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ‘ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) ) |
39 |
37 38
|
syl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ ( ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ‘ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) ) |
40 |
39
|
biimpa |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ‘ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) |
41 |
20 40
|
eqeltrrd |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) |
42 |
|
imaeq2 |
⊢ ( 𝑧 = ( 𝐹 “ { 𝑥 , 𝑦 } ) → ( ◡ 𝐹 “ 𝑧 ) = ( ◡ 𝐹 “ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) ) |
43 |
|
imaeq2 |
⊢ ( 𝑒 = 𝑦 → ( 𝐹 “ 𝑒 ) = ( 𝐹 “ 𝑦 ) ) |
44 |
43
|
cbvmptv |
⊢ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) = ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 “ 𝑦 ) ) |
45 |
|
f1oeq1 |
⊢ ( ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) = ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 “ 𝑦 ) ) → ( ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ↔ ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 “ 𝑦 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) |
46 |
44 45
|
mp1i |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ↔ ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 “ 𝑦 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) |
47 |
|
imaeq2 |
⊢ ( 𝑒 = 𝑥 → ( 𝐹 “ 𝑒 ) = ( 𝐹 “ 𝑥 ) ) |
48 |
47
|
cbvmptv |
⊢ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) = ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) |
49 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) |
50 |
49
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 “ 𝑦 ) ) : 𝐸 –1-1-onto→ 𝐷 ) → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) |
51 |
|
uspgruhgr |
⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph ) |
52 |
|
uhgredgss |
⊢ ( 𝐺 ∈ UHGraph → ( Edg ‘ 𝐺 ) ⊆ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
53 |
|
difss2 |
⊢ ( ( Edg ‘ 𝐺 ) ⊆ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → ( Edg ‘ 𝐺 ) ⊆ 𝒫 ( Vtx ‘ 𝐺 ) ) |
54 |
51 52 53
|
3syl |
⊢ ( 𝐺 ∈ USPGraph → ( Edg ‘ 𝐺 ) ⊆ 𝒫 ( Vtx ‘ 𝐺 ) ) |
55 |
1
|
pweqi |
⊢ 𝒫 𝑉 = 𝒫 ( Vtx ‘ 𝐺 ) |
56 |
54 3 55
|
3sstr4g |
⊢ ( 𝐺 ∈ USPGraph → 𝐸 ⊆ 𝒫 𝑉 ) |
57 |
56
|
adantr |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → 𝐸 ⊆ 𝒫 𝑉 ) |
58 |
57
|
ad2antrr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 “ 𝑦 ) ) : 𝐸 –1-1-onto→ 𝐷 ) → 𝐸 ⊆ 𝒫 𝑉 ) |
59 |
|
f1ofo |
⊢ ( ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 “ 𝑦 ) ) : 𝐸 –1-1-onto→ 𝐷 → ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 “ 𝑦 ) ) : 𝐸 –onto→ 𝐷 ) |
60 |
44
|
rneqi |
⊢ ran ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) = ran ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 “ 𝑦 ) ) |
61 |
|
forn |
⊢ ( ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 “ 𝑦 ) ) : 𝐸 –onto→ 𝐷 → ran ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 “ 𝑦 ) ) = 𝐷 ) |
62 |
60 61
|
eqtrid |
⊢ ( ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 “ 𝑦 ) ) : 𝐸 –onto→ 𝐷 → ran ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) = 𝐷 ) |
63 |
59 62
|
syl |
⊢ ( ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 “ 𝑦 ) ) : 𝐸 –1-1-onto→ 𝐷 → ran ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) = 𝐷 ) |
64 |
63
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 “ 𝑦 ) ) : 𝐸 –1-1-onto→ 𝐷 ) → ran ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) = 𝐷 ) |
65 |
|
uhgredgss |
⊢ ( 𝐻 ∈ UHGraph → ( Edg ‘ 𝐻 ) ⊆ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) ) |
66 |
|
difss2 |
⊢ ( ( Edg ‘ 𝐻 ) ⊆ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) → ( Edg ‘ 𝐻 ) ⊆ 𝒫 ( Vtx ‘ 𝐻 ) ) |
67 |
25 65 66
|
3syl |
⊢ ( 𝐻 ∈ USPGraph → ( Edg ‘ 𝐻 ) ⊆ 𝒫 ( Vtx ‘ 𝐻 ) ) |
68 |
2
|
pweqi |
⊢ 𝒫 𝑊 = 𝒫 ( Vtx ‘ 𝐻 ) |
69 |
67 4 68
|
3sstr4g |
⊢ ( 𝐻 ∈ USPGraph → 𝐷 ⊆ 𝒫 𝑊 ) |
70 |
69
|
adantl |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → 𝐷 ⊆ 𝒫 𝑊 ) |
71 |
70
|
ad2antrr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 “ 𝑦 ) ) : 𝐸 –1-1-onto→ 𝐷 ) → 𝐷 ⊆ 𝒫 𝑊 ) |
72 |
64 71
|
eqsstrd |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 “ 𝑦 ) ) : 𝐸 –1-1-onto→ 𝐷 ) → ran ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ⊆ 𝒫 𝑊 ) |
73 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
74 |
73
|
a1i |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 “ 𝑦 ) ) : 𝐸 –1-1-onto→ 𝐷 ) → 𝑉 ∈ V ) |
75 |
48 50 58 72 74
|
mptcnfimad |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 “ 𝑦 ) ) : 𝐸 –1-1-onto→ 𝐷 ) → ◡ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) = ( 𝑧 ∈ ran ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ↦ ( ◡ 𝐹 “ 𝑧 ) ) ) |
76 |
75
|
ex |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( ( 𝑦 ∈ 𝐸 ↦ ( 𝐹 “ 𝑦 ) ) : 𝐸 –1-1-onto→ 𝐷 → ◡ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) = ( 𝑧 ∈ ran ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ↦ ( ◡ 𝐹 “ 𝑧 ) ) ) ) |
77 |
46 76
|
sylbid |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 → ◡ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) = ( 𝑧 ∈ ran ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ↦ ( ◡ 𝐹 “ 𝑧 ) ) ) ) |
78 |
77
|
impr |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) → ◡ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) = ( 𝑧 ∈ ran ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ↦ ( ◡ 𝐹 “ 𝑧 ) ) ) |
79 |
78
|
ad2antrr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) → ◡ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) = ( 𝑧 ∈ ran ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ↦ ( ◡ 𝐹 “ 𝑧 ) ) ) |
80 |
|
f1ofo |
⊢ ( ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 → ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –onto→ 𝐷 ) |
81 |
|
forn |
⊢ ( ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –onto→ 𝐷 → ran ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) = 𝐷 ) |
82 |
81
|
eqcomd |
⊢ ( ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –onto→ 𝐷 → 𝐷 = ran ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ) |
83 |
80 82
|
syl |
⊢ ( ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 → 𝐷 = ran ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ) |
84 |
83
|
adantl |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) → 𝐷 = ran ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ) |
85 |
84
|
ad2antlr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝐷 = ran ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ) |
86 |
85
|
eleq2d |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ↔ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ ran ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ) ) |
87 |
86
|
biimpa |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) → ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ ran ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ) |
88 |
|
dff1o2 |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ↔ ( 𝐹 Fn 𝑉 ∧ Fun ◡ 𝐹 ∧ ran 𝐹 = 𝑊 ) ) |
89 |
88
|
simp2bi |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → Fun ◡ 𝐹 ) |
90 |
89
|
adantr |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) → Fun ◡ 𝐹 ) |
91 |
90
|
ad2antlr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → Fun ◡ 𝐹 ) |
92 |
|
funimaexg |
⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) → ( ◡ 𝐹 “ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) ∈ V ) |
93 |
91 92
|
sylan |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) → ( ◡ 𝐹 “ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) ∈ V ) |
94 |
42 79 87 93
|
fvmptd4 |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) → ( ◡ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ‘ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) = ( ◡ 𝐹 “ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) ) |
95 |
|
simplrr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) |
96 |
|
f1ocnvdm |
⊢ ( ( ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ∧ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) → ( ◡ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ‘ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) ∈ 𝐸 ) |
97 |
95 96
|
sylan |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) → ( ◡ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) ‘ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) ∈ 𝐸 ) |
98 |
94 97
|
eqeltrrd |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) → ( ◡ 𝐹 “ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) ∈ 𝐸 ) |
99 |
|
f1of1 |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
100 |
99
|
ad2antrl |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
101 |
|
prssi |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → { 𝑥 , 𝑦 } ⊆ 𝑉 ) |
102 |
|
f1imacnv |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ { 𝑥 , 𝑦 } ⊆ 𝑉 ) → ( ◡ 𝐹 “ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) = { 𝑥 , 𝑦 } ) |
103 |
100 101 102
|
syl2an |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) = { 𝑥 , 𝑦 } ) |
104 |
103
|
eqcomd |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → { 𝑥 , 𝑦 } = ( ◡ 𝐹 “ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) ) |
105 |
104
|
eleq1d |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ ( ◡ 𝐹 “ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) ∈ 𝐸 ) ) |
106 |
105
|
adantr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ ( ◡ 𝐹 “ ( 𝐹 “ { 𝑥 , 𝑦 } ) ) ∈ 𝐸 ) ) |
107 |
98 106
|
mpbird |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) → { 𝑥 , 𝑦 } ∈ 𝐸 ) |
108 |
41 107
|
impbida |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ) ) |
109 |
|
f1ofn |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 Fn 𝑉 ) |
110 |
109
|
ad2antrl |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) → 𝐹 Fn 𝑉 ) |
111 |
110
|
anim1i |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝐹 Fn 𝑉 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) |
112 |
|
3anass |
⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ↔ ( 𝐹 Fn 𝑉 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) |
113 |
111 112
|
sylibr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝐹 Fn 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) |
114 |
|
fnimapr |
⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝐹 “ { 𝑥 , 𝑦 } ) = { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ) |
115 |
113 114
|
syl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝐹 “ { 𝑥 , 𝑦 } ) = { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ) |
116 |
115
|
eleq1d |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ( 𝐹 “ { 𝑥 , 𝑦 } ) ∈ 𝐷 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) |
117 |
108 116
|
bitrd |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) |
118 |
117
|
ralrimivva |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) → ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) |
119 |
7 118
|
jca |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ) |
120 |
119
|
ex |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ) ) |
121 |
120
|
adantr |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ) ) |
122 |
6 121
|
sylbid |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ) ) |
123 |
122
|
syldbl2 |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ) |
124 |
123
|
ex |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ) ) |