Metamath Proof Explorer


Theorem uspgrimprop

Description: An isomorphism of simple pseudographs is a bijection between their vertices that preserves adjacency, i.e. there is an edge in one graph connecting one or two vertices iff there is an edge in the other graph connecting the vertices which are the images of the vertices. (Contributed by AV, 27-Apr-2025)

Ref Expression
Hypotheses isusgrim.v V = Vtx G
isusgrim.w W = Vtx H
isusgrim.e E = Edg G
isusgrim.d D = Edg H
Assertion uspgrimprop G USHGraph H USHGraph F G GraphIso H F : V 1-1 onto W x V y V x y E F x F y D

Proof

Step Hyp Ref Expression
1 isusgrim.v V = Vtx G
2 isusgrim.w W = Vtx H
3 isusgrim.e E = Edg G
4 isusgrim.d D = Edg H
5 1 2 3 4 isuspgrim0 G USHGraph H USHGraph F G GraphIso H F G GraphIso H F : V 1-1 onto W e E F e : E 1-1 onto D
6 5 3expa G USHGraph H USHGraph F G GraphIso H F G GraphIso H F : V 1-1 onto W e E F e : E 1-1 onto D
7 simprl G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D F : V 1-1 onto W
8 imaeq2 e = x y F e = F x y
9 eqidd F : V 1-1 onto W x y E e E F e = e E F e
10 simpr F : V 1-1 onto W x y E x y E
11 f1ofun F : V 1-1 onto W Fun F
12 zfpair2 x y V
13 funimaexg Fun F x y V F x y V
14 11 12 13 sylancl F : V 1-1 onto W F x y V
15 14 adantr F : V 1-1 onto W x y E F x y V
16 8 9 10 15 fvmptd4 F : V 1-1 onto W x y E e E F e x y = F x y
17 16 ex F : V 1-1 onto W x y E e E F e x y = F x y
18 17 adantr F : V 1-1 onto W e E F e : E 1-1 onto D x y E e E F e x y = F x y
19 18 ad2antlr G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V x y E e E F e x y = F x y
20 19 imp G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V x y E e E F e x y = F x y
21 f1of e E F e : E 1-1 onto D e E F e : E D
22 21 ad2antll G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D e E F e : E D
23 ax-1 D H USHGraph D
24 nnel ¬ D D
25 uspgruhgr H USHGraph H UHGraph
26 uhgredgn0 H UHGraph Edg H 𝒫 Vtx H
27 25 26 sylan H USHGraph Edg H 𝒫 Vtx H
28 neldifsn ¬ 𝒫 Vtx H
29 28 pm2.21i 𝒫 Vtx H D
30 27 29 syl H USHGraph Edg H D
31 30 expcom Edg H H USHGraph D
32 31 4 eleq2s D H USHGraph D
33 24 32 sylbi ¬ D H USHGraph D
34 23 33 pm2.61i H USHGraph D
35 34 ad2antlr G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D D
36 22 35 jca G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D e E F e : E D D
37 36 adantr G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V e E F e : E D D
38 feldmfvelcdm e E F e : E D D x y E e E F e x y D
39 37 38 syl G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V x y E e E F e x y D
40 39 biimpa G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V x y E e E F e x y D
41 20 40 eqeltrrd G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V x y E F x y D
42 imaeq2 z = F x y F -1 z = F -1 F x y
43 imaeq2 e = y F e = F y
44 43 cbvmptv e E F e = y E F y
45 f1oeq1 e E F e = y E F y e E F e : E 1-1 onto D y E F y : E 1-1 onto D
46 44 45 mp1i G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D y E F y : E 1-1 onto D
47 imaeq2 e = x F e = F x
48 47 cbvmptv e E F e = x E F x
49 simpr G USHGraph H USHGraph F : V 1-1 onto W F : V 1-1 onto W
50 49 adantr G USHGraph H USHGraph F : V 1-1 onto W y E F y : E 1-1 onto D F : V 1-1 onto W
51 uspgruhgr G USHGraph G UHGraph
52 uhgredgss G UHGraph Edg G 𝒫 Vtx G
53 difss2 Edg G 𝒫 Vtx G Edg G 𝒫 Vtx G
54 51 52 53 3syl G USHGraph Edg G 𝒫 Vtx G
55 1 pweqi 𝒫 V = 𝒫 Vtx G
56 54 3 55 3sstr4g G USHGraph E 𝒫 V
57 56 adantr G USHGraph H USHGraph E 𝒫 V
58 57 ad2antrr G USHGraph H USHGraph F : V 1-1 onto W y E F y : E 1-1 onto D E 𝒫 V
59 f1ofo y E F y : E 1-1 onto D y E F y : E onto D
60 44 rneqi ran e E F e = ran y E F y
61 forn y E F y : E onto D ran y E F y = D
62 60 61 eqtrid y E F y : E onto D ran e E F e = D
63 59 62 syl y E F y : E 1-1 onto D ran e E F e = D
64 63 adantl G USHGraph H USHGraph F : V 1-1 onto W y E F y : E 1-1 onto D ran e E F e = D
65 uhgredgss H UHGraph Edg H 𝒫 Vtx H
66 difss2 Edg H 𝒫 Vtx H Edg H 𝒫 Vtx H
67 25 65 66 3syl H USHGraph Edg H 𝒫 Vtx H
68 2 pweqi 𝒫 W = 𝒫 Vtx H
69 67 4 68 3sstr4g H USHGraph D 𝒫 W
70 69 adantl G USHGraph H USHGraph D 𝒫 W
71 70 ad2antrr G USHGraph H USHGraph F : V 1-1 onto W y E F y : E 1-1 onto D D 𝒫 W
72 64 71 eqsstrd G USHGraph H USHGraph F : V 1-1 onto W y E F y : E 1-1 onto D ran e E F e 𝒫 W
73 1 fvexi V V
74 73 a1i G USHGraph H USHGraph F : V 1-1 onto W y E F y : E 1-1 onto D V V
75 48 50 58 72 74 mptcnfimad G USHGraph H USHGraph F : V 1-1 onto W y E F y : E 1-1 onto D e E F e -1 = z ran e E F e F -1 z
76 75 ex G USHGraph H USHGraph F : V 1-1 onto W y E F y : E 1-1 onto D e E F e -1 = z ran e E F e F -1 z
77 46 76 sylbid G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D e E F e -1 = z ran e E F e F -1 z
78 77 impr G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D e E F e -1 = z ran e E F e F -1 z
79 78 ad2antrr G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V F x y D e E F e -1 = z ran e E F e F -1 z
80 f1ofo e E F e : E 1-1 onto D e E F e : E onto D
81 forn e E F e : E onto D ran e E F e = D
82 81 eqcomd e E F e : E onto D D = ran e E F e
83 80 82 syl e E F e : E 1-1 onto D D = ran e E F e
84 83 adantl F : V 1-1 onto W e E F e : E 1-1 onto D D = ran e E F e
85 84 ad2antlr G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V D = ran e E F e
86 85 eleq2d G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V F x y D F x y ran e E F e
87 86 biimpa G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V F x y D F x y ran e E F e
88 dff1o2 F : V 1-1 onto W F Fn V Fun F -1 ran F = W
89 88 simp2bi F : V 1-1 onto W Fun F -1
90 89 adantr F : V 1-1 onto W e E F e : E 1-1 onto D Fun F -1
91 90 ad2antlr G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V Fun F -1
92 funimaexg Fun F -1 F x y D F -1 F x y V
93 91 92 sylan G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V F x y D F -1 F x y V
94 42 79 87 93 fvmptd4 G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V F x y D e E F e -1 F x y = F -1 F x y
95 simplrr G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V e E F e : E 1-1 onto D
96 f1ocnvdm e E F e : E 1-1 onto D F x y D e E F e -1 F x y E
97 95 96 sylan G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V F x y D e E F e -1 F x y E
98 94 97 eqeltrrd G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V F x y D F -1 F x y E
99 f1of1 F : V 1-1 onto W F : V 1-1 W
100 99 ad2antrl G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D F : V 1-1 W
101 prssi x V y V x y V
102 f1imacnv F : V 1-1 W x y V F -1 F x y = x y
103 100 101 102 syl2an G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V F -1 F x y = x y
104 103 eqcomd G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V x y = F -1 F x y
105 104 eleq1d G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V x y E F -1 F x y E
106 105 adantr G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V F x y D x y E F -1 F x y E
107 98 106 mpbird G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V F x y D x y E
108 41 107 impbida G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V x y E F x y D
109 f1ofn F : V 1-1 onto W F Fn V
110 109 ad2antrl G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D F Fn V
111 110 anim1i G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V F Fn V x V y V
112 3anass F Fn V x V y V F Fn V x V y V
113 111 112 sylibr G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V F Fn V x V y V
114 fnimapr F Fn V x V y V F x y = F x F y
115 113 114 syl G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V F x y = F x F y
116 115 eleq1d G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V F x y D F x F y D
117 108 116 bitrd G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V x y E F x F y D
118 117 ralrimivva G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D x V y V x y E F x F y D
119 7 118 jca G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D F : V 1-1 onto W x V y V x y E F x F y D
120 119 ex G USHGraph H USHGraph F : V 1-1 onto W e E F e : E 1-1 onto D F : V 1-1 onto W x V y V x y E F x F y D
121 120 adantr G USHGraph H USHGraph F G GraphIso H F : V 1-1 onto W e E F e : E 1-1 onto D F : V 1-1 onto W x V y V x y E F x F y D
122 6 121 sylbid G USHGraph H USHGraph F G GraphIso H F G GraphIso H F : V 1-1 onto W x V y V x y E F x F y D
123 122 syldbl2 G USHGraph H USHGraph F G GraphIso H F : V 1-1 onto W x V y V x y E F x F y D
124 123 ex G USHGraph H USHGraph F G GraphIso H F : V 1-1 onto W x V y V x y E F x F y D