| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1128.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
| 2 |
|
bnj1128.2 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
| 3 |
|
bnj1128.3 |
|- D = ( _om \ { (/) } ) |
| 4 |
|
bnj1128.4 |
|- B = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } |
| 5 |
|
bnj1128.5 |
|- ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) ) |
| 6 |
|
bnj1128.6 |
|- ( th <-> ( ch -> ( f ` i ) C_ A ) ) |
| 7 |
|
bnj1128.7 |
|- ( ta <-> A. j e. n ( j _E i -> [. j / i ]. th ) ) |
| 8 |
|
bnj1128.8 |
|- ( ph' <-> [. j / i ]. ph ) |
| 9 |
|
bnj1128.9 |
|- ( ps' <-> [. j / i ]. ps ) |
| 10 |
|
bnj1128.10 |
|- ( ch' <-> [. j / i ]. ch ) |
| 11 |
|
bnj1128.11 |
|- ( th' <-> [. j / i ]. th ) |
| 12 |
1 2 3 4 5
|
bnj981 |
|- ( Y e. _trCl ( X , A , R ) -> E. f E. n E. i ( ch /\ i e. n /\ Y e. ( f ` i ) ) ) |
| 13 |
|
simp1 |
|- ( ( ch /\ i e. n /\ Y e. ( f ` i ) ) -> ch ) |
| 14 |
|
simp2 |
|- ( ( ch /\ i e. n /\ Y e. ( f ` i ) ) -> i e. n ) |
| 15 |
|
nfv |
|- F/ j i e. n |
| 16 |
|
nfra1 |
|- F/ j A. j e. n ( j _E i -> [. j / i ]. th ) |
| 17 |
7 16
|
nfxfr |
|- F/ j ta |
| 18 |
|
nfv |
|- F/ j ch |
| 19 |
15 17 18
|
nf3an |
|- F/ j ( i e. n /\ ta /\ ch ) |
| 20 |
|
nfv |
|- F/ j ( f ` i ) C_ A |
| 21 |
19 20
|
nfim |
|- F/ j ( ( i e. n /\ ta /\ ch ) -> ( f ` i ) C_ A ) |
| 22 |
21
|
nf5ri |
|- ( ( ( i e. n /\ ta /\ ch ) -> ( f ` i ) C_ A ) -> A. j ( ( i e. n /\ ta /\ ch ) -> ( f ` i ) C_ A ) ) |
| 23 |
3
|
bnj1098 |
|- E. j ( ( i =/= (/) /\ i e. n /\ n e. D ) -> ( j e. n /\ i = suc j ) ) |
| 24 |
|
simpl |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> i =/= (/) ) |
| 25 |
|
simpr1 |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> i e. n ) |
| 26 |
5
|
bnj1232 |
|- ( ch -> n e. D ) |
| 27 |
26
|
3ad2ant3 |
|- ( ( i e. n /\ ta /\ ch ) -> n e. D ) |
| 28 |
27
|
adantl |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> n e. D ) |
| 29 |
24 25 28
|
3jca |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( i =/= (/) /\ i e. n /\ n e. D ) ) |
| 30 |
23 29
|
bnj1101 |
|- E. j ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( j e. n /\ i = suc j ) ) |
| 31 |
|
ancl |
|- ( ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( j e. n /\ i = suc j ) ) -> ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) /\ ( j e. n /\ i = suc j ) ) ) ) |
| 32 |
30 31
|
bnj101 |
|- E. j ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) /\ ( j e. n /\ i = suc j ) ) ) |
| 33 |
|
df-3an |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) <-> ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) /\ ( j e. n /\ i = suc j ) ) ) |
| 34 |
33
|
imbi2i |
|- ( ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) ) <-> ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) /\ ( j e. n /\ i = suc j ) ) ) ) |
| 35 |
34
|
exbii |
|- ( E. j ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) ) <-> E. j ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) /\ ( j e. n /\ i = suc j ) ) ) ) |
| 36 |
32 35
|
mpbir |
|- E. j ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) ) |
| 37 |
|
bnj213 |
|- _pred ( y , A , R ) C_ A |
| 38 |
37
|
bnj226 |
|- U_ y e. ( f ` j ) _pred ( y , A , R ) C_ A |
| 39 |
|
simp21 |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) -> i e. n ) |
| 40 |
|
simp3r |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) -> i = suc j ) |
| 41 |
|
biid |
|- ( n e. D <-> n e. D ) |
| 42 |
|
biid |
|- ( f Fn n <-> f Fn n ) |
| 43 |
|
vex |
|- j e. _V |
| 44 |
|
sbcg |
|- ( j e. _V -> ( [. j / i ]. ph <-> ph ) ) |
| 45 |
43 44
|
ax-mp |
|- ( [. j / i ]. ph <-> ph ) |
| 46 |
8 45
|
bitr2i |
|- ( ph <-> ph' ) |
| 47 |
2 9
|
bnj1039 |
|- ( ps' <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
| 48 |
2 47
|
bitr4i |
|- ( ps <-> ps' ) |
| 49 |
41 42 46 48
|
bnj887 |
|- ( ( n e. D /\ f Fn n /\ ph /\ ps ) <-> ( n e. D /\ f Fn n /\ ph' /\ ps' ) ) |
| 50 |
8 9 5 10
|
bnj1040 |
|- ( ch' <-> ( n e. D /\ f Fn n /\ ph' /\ ps' ) ) |
| 51 |
49 5 50
|
3bitr4i |
|- ( ch <-> ch' ) |
| 52 |
50
|
bnj1254 |
|- ( ch' -> ps' ) |
| 53 |
51 52
|
sylbi |
|- ( ch -> ps' ) |
| 54 |
53
|
3ad2ant3 |
|- ( ( i e. n /\ ta /\ ch ) -> ps' ) |
| 55 |
54
|
3ad2ant2 |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) -> ps' ) |
| 56 |
|
simp3l |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) -> j e. n ) |
| 57 |
27
|
3ad2ant2 |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) -> n e. D ) |
| 58 |
3
|
bnj923 |
|- ( n e. D -> n e. _om ) |
| 59 |
|
elnn |
|- ( ( j e. n /\ n e. _om ) -> j e. _om ) |
| 60 |
58 59
|
sylan2 |
|- ( ( j e. n /\ n e. D ) -> j e. _om ) |
| 61 |
56 57 60
|
syl2anc |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) -> j e. _om ) |
| 62 |
47
|
bnj589 |
|- ( ps' <-> A. j e. _om ( suc j e. n -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) |
| 63 |
|
rsp |
|- ( A. j e. _om ( suc j e. n -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) -> ( j e. _om -> ( suc j e. n -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) ) |
| 64 |
62 63
|
sylbi |
|- ( ps' -> ( j e. _om -> ( suc j e. n -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) ) |
| 65 |
|
eleq1 |
|- ( i = suc j -> ( i e. n <-> suc j e. n ) ) |
| 66 |
|
fveqeq2 |
|- ( i = suc j -> ( ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) <-> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) |
| 67 |
65 66
|
imbi12d |
|- ( i = suc j -> ( ( i e. n -> ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) <-> ( suc j e. n -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) ) |
| 68 |
67
|
imbi2d |
|- ( i = suc j -> ( ( j e. _om -> ( i e. n -> ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) <-> ( j e. _om -> ( suc j e. n -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) ) ) |
| 69 |
64 68
|
imbitrrid |
|- ( i = suc j -> ( ps' -> ( j e. _om -> ( i e. n -> ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) ) ) |
| 70 |
40 55 61 69
|
syl3c |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) -> ( i e. n -> ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) |
| 71 |
39 70
|
mpd |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) -> ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) |
| 72 |
38 71
|
bnj1262 |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) -> ( f ` i ) C_ A ) |
| 73 |
36 72
|
bnj1023 |
|- E. j ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( f ` i ) C_ A ) |
| 74 |
5
|
bnj1247 |
|- ( ch -> ph ) |
| 75 |
74
|
3ad2ant3 |
|- ( ( i e. n /\ ta /\ ch ) -> ph ) |
| 76 |
|
bnj213 |
|- _pred ( X , A , R ) C_ A |
| 77 |
|
fveq2 |
|- ( i = (/) -> ( f ` i ) = ( f ` (/) ) ) |
| 78 |
1
|
biimpi |
|- ( ph -> ( f ` (/) ) = _pred ( X , A , R ) ) |
| 79 |
77 78
|
sylan9eq |
|- ( ( i = (/) /\ ph ) -> ( f ` i ) = _pred ( X , A , R ) ) |
| 80 |
76 79
|
bnj1262 |
|- ( ( i = (/) /\ ph ) -> ( f ` i ) C_ A ) |
| 81 |
75 80
|
sylan2 |
|- ( ( i = (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( f ` i ) C_ A ) |
| 82 |
73 81
|
bnj1109 |
|- E. j ( ( i e. n /\ ta /\ ch ) -> ( f ` i ) C_ A ) |
| 83 |
22 82
|
bnj1131 |
|- ( ( i e. n /\ ta /\ ch ) -> ( f ` i ) C_ A ) |
| 84 |
83
|
3expia |
|- ( ( i e. n /\ ta ) -> ( ch -> ( f ` i ) C_ A ) ) |
| 85 |
84 6
|
sylibr |
|- ( ( i e. n /\ ta ) -> th ) |
| 86 |
3 5 7 85
|
bnj1133 |
|- ( ch -> A. i e. n th ) |
| 87 |
6
|
ralbii |
|- ( A. i e. n th <-> A. i e. n ( ch -> ( f ` i ) C_ A ) ) |
| 88 |
86 87
|
sylib |
|- ( ch -> A. i e. n ( ch -> ( f ` i ) C_ A ) ) |
| 89 |
|
rsp |
|- ( A. i e. n ( ch -> ( f ` i ) C_ A ) -> ( i e. n -> ( ch -> ( f ` i ) C_ A ) ) ) |
| 90 |
88 89
|
syl |
|- ( ch -> ( i e. n -> ( ch -> ( f ` i ) C_ A ) ) ) |
| 91 |
13 14 13 90
|
syl3c |
|- ( ( ch /\ i e. n /\ Y e. ( f ` i ) ) -> ( f ` i ) C_ A ) |
| 92 |
|
simp3 |
|- ( ( ch /\ i e. n /\ Y e. ( f ` i ) ) -> Y e. ( f ` i ) ) |
| 93 |
91 92
|
sseldd |
|- ( ( ch /\ i e. n /\ Y e. ( f ` i ) ) -> Y e. A ) |
| 94 |
93
|
2eximi |
|- ( E. n E. i ( ch /\ i e. n /\ Y e. ( f ` i ) ) -> E. n E. i Y e. A ) |
| 95 |
12 94
|
bnj593 |
|- ( Y e. _trCl ( X , A , R ) -> E. f E. n E. i Y e. A ) |
| 96 |
|
19.9v |
|- ( E. f E. n E. i Y e. A <-> E. n E. i Y e. A ) |
| 97 |
|
19.9v |
|- ( E. n E. i Y e. A <-> E. i Y e. A ) |
| 98 |
|
19.9v |
|- ( E. i Y e. A <-> Y e. A ) |
| 99 |
96 97 98
|
3bitri |
|- ( E. f E. n E. i Y e. A <-> Y e. A ) |
| 100 |
95 99
|
sylib |
|- ( Y e. _trCl ( X , A , R ) -> Y e. A ) |