| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dibintcl.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dibintcl.i |
|- I = ( ( DIsoB ` K ) ` W ) |
| 3 |
1 2
|
dibf11N |
|- ( ( K e. HL /\ W e. H ) -> I : dom I -1-1-onto-> ran I ) |
| 4 |
3
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> I : dom I -1-1-onto-> ran I ) |
| 5 |
|
f1ofn |
|- ( I : dom I -1-1-onto-> ran I -> I Fn dom I ) |
| 6 |
4 5
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> I Fn dom I ) |
| 7 |
|
cnvimass |
|- ( `' I " S ) C_ dom I |
| 8 |
|
fnssres |
|- ( ( I Fn dom I /\ ( `' I " S ) C_ dom I ) -> ( I |` ( `' I " S ) ) Fn ( `' I " S ) ) |
| 9 |
6 7 8
|
sylancl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( I |` ( `' I " S ) ) Fn ( `' I " S ) ) |
| 10 |
|
fniinfv |
|- ( ( I |` ( `' I " S ) ) Fn ( `' I " S ) -> |^|_ y e. ( `' I " S ) ( ( I |` ( `' I " S ) ) ` y ) = |^| ran ( I |` ( `' I " S ) ) ) |
| 11 |
9 10
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> |^|_ y e. ( `' I " S ) ( ( I |` ( `' I " S ) ) ` y ) = |^| ran ( I |` ( `' I " S ) ) ) |
| 12 |
|
df-ima |
|- ( I " ( `' I " S ) ) = ran ( I |` ( `' I " S ) ) |
| 13 |
|
f1ofo |
|- ( I : dom I -1-1-onto-> ran I -> I : dom I -onto-> ran I ) |
| 14 |
3 13
|
syl |
|- ( ( K e. HL /\ W e. H ) -> I : dom I -onto-> ran I ) |
| 15 |
14
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> I : dom I -onto-> ran I ) |
| 16 |
|
simprl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> S C_ ran I ) |
| 17 |
|
foimacnv |
|- ( ( I : dom I -onto-> ran I /\ S C_ ran I ) -> ( I " ( `' I " S ) ) = S ) |
| 18 |
15 16 17
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( I " ( `' I " S ) ) = S ) |
| 19 |
12 18
|
eqtr3id |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ran ( I |` ( `' I " S ) ) = S ) |
| 20 |
19
|
inteqd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> |^| ran ( I |` ( `' I " S ) ) = |^| S ) |
| 21 |
11 20
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> |^|_ y e. ( `' I " S ) ( ( I |` ( `' I " S ) ) ` y ) = |^| S ) |
| 22 |
|
simpl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( K e. HL /\ W e. H ) ) |
| 23 |
7
|
a1i |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( `' I " S ) C_ dom I ) |
| 24 |
|
simprr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> S =/= (/) ) |
| 25 |
|
n0 |
|- ( S =/= (/) <-> E. y y e. S ) |
| 26 |
24 25
|
sylib |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> E. y y e. S ) |
| 27 |
16
|
sselda |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. S ) -> y e. ran I ) |
| 28 |
3
|
ad2antrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. S ) -> I : dom I -1-1-onto-> ran I ) |
| 29 |
28 5
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. S ) -> I Fn dom I ) |
| 30 |
|
fvelrnb |
|- ( I Fn dom I -> ( y e. ran I <-> E. x e. dom I ( I ` x ) = y ) ) |
| 31 |
29 30
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. S ) -> ( y e. ran I <-> E. x e. dom I ( I ` x ) = y ) ) |
| 32 |
27 31
|
mpbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. S ) -> E. x e. dom I ( I ` x ) = y ) |
| 33 |
|
f1ofun |
|- ( I : dom I -1-1-onto-> ran I -> Fun I ) |
| 34 |
3 33
|
syl |
|- ( ( K e. HL /\ W e. H ) -> Fun I ) |
| 35 |
34
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> Fun I ) |
| 36 |
|
fvimacnv |
|- ( ( Fun I /\ x e. dom I ) -> ( ( I ` x ) e. S <-> x e. ( `' I " S ) ) ) |
| 37 |
35 36
|
sylan |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ x e. dom I ) -> ( ( I ` x ) e. S <-> x e. ( `' I " S ) ) ) |
| 38 |
|
ne0i |
|- ( x e. ( `' I " S ) -> ( `' I " S ) =/= (/) ) |
| 39 |
37 38
|
biimtrdi |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ x e. dom I ) -> ( ( I ` x ) e. S -> ( `' I " S ) =/= (/) ) ) |
| 40 |
39
|
ex |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( x e. dom I -> ( ( I ` x ) e. S -> ( `' I " S ) =/= (/) ) ) ) |
| 41 |
|
eleq1 |
|- ( ( I ` x ) = y -> ( ( I ` x ) e. S <-> y e. S ) ) |
| 42 |
41
|
biimprd |
|- ( ( I ` x ) = y -> ( y e. S -> ( I ` x ) e. S ) ) |
| 43 |
42
|
imim1d |
|- ( ( I ` x ) = y -> ( ( ( I ` x ) e. S -> ( `' I " S ) =/= (/) ) -> ( y e. S -> ( `' I " S ) =/= (/) ) ) ) |
| 44 |
40 43
|
syl9 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( ( I ` x ) = y -> ( x e. dom I -> ( y e. S -> ( `' I " S ) =/= (/) ) ) ) ) |
| 45 |
44
|
com24 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( y e. S -> ( x e. dom I -> ( ( I ` x ) = y -> ( `' I " S ) =/= (/) ) ) ) ) |
| 46 |
45
|
imp |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. S ) -> ( x e. dom I -> ( ( I ` x ) = y -> ( `' I " S ) =/= (/) ) ) ) |
| 47 |
46
|
rexlimdv |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. S ) -> ( E. x e. dom I ( I ` x ) = y -> ( `' I " S ) =/= (/) ) ) |
| 48 |
32 47
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. S ) -> ( `' I " S ) =/= (/) ) |
| 49 |
26 48
|
exlimddv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( `' I " S ) =/= (/) ) |
| 50 |
|
eqid |
|- ( glb ` K ) = ( glb ` K ) |
| 51 |
50 1 2
|
dibglbN |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( `' I " S ) C_ dom I /\ ( `' I " S ) =/= (/) ) ) -> ( I ` ( ( glb ` K ) ` ( `' I " S ) ) ) = |^|_ y e. ( `' I " S ) ( I ` y ) ) |
| 52 |
22 23 49 51
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( I ` ( ( glb ` K ) ` ( `' I " S ) ) ) = |^|_ y e. ( `' I " S ) ( I ` y ) ) |
| 53 |
|
fvres |
|- ( y e. ( `' I " S ) -> ( ( I |` ( `' I " S ) ) ` y ) = ( I ` y ) ) |
| 54 |
53
|
iineq2i |
|- |^|_ y e. ( `' I " S ) ( ( I |` ( `' I " S ) ) ` y ) = |^|_ y e. ( `' I " S ) ( I ` y ) |
| 55 |
52 54
|
eqtr4di |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( I ` ( ( glb ` K ) ` ( `' I " S ) ) ) = |^|_ y e. ( `' I " S ) ( ( I |` ( `' I " S ) ) ` y ) ) |
| 56 |
|
hlclat |
|- ( K e. HL -> K e. CLat ) |
| 57 |
56
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> K e. CLat ) |
| 58 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 59 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 60 |
58 59 1 2
|
dibdmN |
|- ( ( K e. HL /\ W e. H ) -> dom I = { x e. ( Base ` K ) | x ( le ` K ) W } ) |
| 61 |
|
ssrab2 |
|- { x e. ( Base ` K ) | x ( le ` K ) W } C_ ( Base ` K ) |
| 62 |
60 61
|
eqsstrdi |
|- ( ( K e. HL /\ W e. H ) -> dom I C_ ( Base ` K ) ) |
| 63 |
62
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> dom I C_ ( Base ` K ) ) |
| 64 |
7 63
|
sstrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( `' I " S ) C_ ( Base ` K ) ) |
| 65 |
58 50
|
clatglbcl |
|- ( ( K e. CLat /\ ( `' I " S ) C_ ( Base ` K ) ) -> ( ( glb ` K ) ` ( `' I " S ) ) e. ( Base ` K ) ) |
| 66 |
57 64 65
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( ( glb ` K ) ` ( `' I " S ) ) e. ( Base ` K ) ) |
| 67 |
|
n0 |
|- ( ( `' I " S ) =/= (/) <-> E. y y e. ( `' I " S ) ) |
| 68 |
49 67
|
sylib |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> E. y y e. ( `' I " S ) ) |
| 69 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
| 70 |
69
|
ad3antrrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. ( `' I " S ) ) -> K e. Lat ) |
| 71 |
66
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. ( `' I " S ) ) -> ( ( glb ` K ) ` ( `' I " S ) ) e. ( Base ` K ) ) |
| 72 |
64
|
sselda |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. ( `' I " S ) ) -> y e. ( Base ` K ) ) |
| 73 |
58 1
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 74 |
73
|
ad3antlr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. ( `' I " S ) ) -> W e. ( Base ` K ) ) |
| 75 |
56
|
ad3antrrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. ( `' I " S ) ) -> K e. CLat ) |
| 76 |
60
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> dom I = { x e. ( Base ` K ) | x ( le ` K ) W } ) |
| 77 |
7 76
|
sseqtrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( `' I " S ) C_ { x e. ( Base ` K ) | x ( le ` K ) W } ) |
| 78 |
77 61
|
sstrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( `' I " S ) C_ ( Base ` K ) ) |
| 79 |
78
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. ( `' I " S ) ) -> ( `' I " S ) C_ ( Base ` K ) ) |
| 80 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. ( `' I " S ) ) -> y e. ( `' I " S ) ) |
| 81 |
58 59 50
|
clatglble |
|- ( ( K e. CLat /\ ( `' I " S ) C_ ( Base ` K ) /\ y e. ( `' I " S ) ) -> ( ( glb ` K ) ` ( `' I " S ) ) ( le ` K ) y ) |
| 82 |
75 79 80 81
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. ( `' I " S ) ) -> ( ( glb ` K ) ` ( `' I " S ) ) ( le ` K ) y ) |
| 83 |
7
|
sseli |
|- ( y e. ( `' I " S ) -> y e. dom I ) |
| 84 |
83
|
adantl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. ( `' I " S ) ) -> y e. dom I ) |
| 85 |
58 59 1 2
|
dibeldmN |
|- ( ( K e. HL /\ W e. H ) -> ( y e. dom I <-> ( y e. ( Base ` K ) /\ y ( le ` K ) W ) ) ) |
| 86 |
85
|
ad2antrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. ( `' I " S ) ) -> ( y e. dom I <-> ( y e. ( Base ` K ) /\ y ( le ` K ) W ) ) ) |
| 87 |
84 86
|
mpbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. ( `' I " S ) ) -> ( y e. ( Base ` K ) /\ y ( le ` K ) W ) ) |
| 88 |
87
|
simprd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. ( `' I " S ) ) -> y ( le ` K ) W ) |
| 89 |
58 59 70 71 72 74 82 88
|
lattrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) /\ y e. ( `' I " S ) ) -> ( ( glb ` K ) ` ( `' I " S ) ) ( le ` K ) W ) |
| 90 |
68 89
|
exlimddv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( ( glb ` K ) ` ( `' I " S ) ) ( le ` K ) W ) |
| 91 |
58 59 1 2
|
dibeldmN |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( glb ` K ) ` ( `' I " S ) ) e. dom I <-> ( ( ( glb ` K ) ` ( `' I " S ) ) e. ( Base ` K ) /\ ( ( glb ` K ) ` ( `' I " S ) ) ( le ` K ) W ) ) ) |
| 92 |
91
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( ( ( glb ` K ) ` ( `' I " S ) ) e. dom I <-> ( ( ( glb ` K ) ` ( `' I " S ) ) e. ( Base ` K ) /\ ( ( glb ` K ) ` ( `' I " S ) ) ( le ` K ) W ) ) ) |
| 93 |
66 90 92
|
mpbir2and |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( ( glb ` K ) ` ( `' I " S ) ) e. dom I ) |
| 94 |
1 2
|
dibclN |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( glb ` K ) ` ( `' I " S ) ) e. dom I ) -> ( I ` ( ( glb ` K ) ` ( `' I " S ) ) ) e. ran I ) |
| 95 |
93 94
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> ( I ` ( ( glb ` K ) ` ( `' I " S ) ) ) e. ran I ) |
| 96 |
55 95
|
eqeltrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> |^|_ y e. ( `' I " S ) ( ( I |` ( `' I " S ) ) ` y ) e. ran I ) |
| 97 |
21 96
|
eqeltrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ ran I /\ S =/= (/) ) ) -> |^| S e. ran I ) |