| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvco.f |  |-  ( ph -> F : X --> CC ) | 
						
							| 2 |  | dvco.x |  |-  ( ph -> X C_ S ) | 
						
							| 3 |  | dvco.g |  |-  ( ph -> G : Y --> X ) | 
						
							| 4 |  | dvco.y |  |-  ( ph -> Y C_ T ) | 
						
							| 5 |  | dvcobr.s |  |-  ( ph -> S C_ CC ) | 
						
							| 6 |  | dvcobr.t |  |-  ( ph -> T C_ CC ) | 
						
							| 7 |  | dvco.bf |  |-  ( ph -> ( G ` C ) ( S _D F ) K ) | 
						
							| 8 |  | dvco.bg |  |-  ( ph -> C ( T _D G ) L ) | 
						
							| 9 |  | dvco.j |  |-  J = ( TopOpen ` CCfld ) | 
						
							| 10 |  | eqid |  |-  ( J |`t T ) = ( J |`t T ) | 
						
							| 11 |  | eqid |  |-  ( z e. ( Y \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) = ( z e. ( Y \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) | 
						
							| 12 | 2 5 | sstrd |  |-  ( ph -> X C_ CC ) | 
						
							| 13 | 3 12 | fssd |  |-  ( ph -> G : Y --> CC ) | 
						
							| 14 | 10 9 11 6 13 4 | eldv |  |-  ( ph -> ( C ( T _D G ) L <-> ( C e. ( ( int ` ( J |`t T ) ) ` Y ) /\ L e. ( ( z e. ( Y \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) limCC C ) ) ) ) | 
						
							| 15 | 8 14 | mpbid |  |-  ( ph -> ( C e. ( ( int ` ( J |`t T ) ) ` Y ) /\ L e. ( ( z e. ( Y \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) limCC C ) ) ) | 
						
							| 16 | 15 | simpld |  |-  ( ph -> C e. ( ( int ` ( J |`t T ) ) ` Y ) ) | 
						
							| 17 | 5 1 2 | dvcl |  |-  ( ( ph /\ ( G ` C ) ( S _D F ) K ) -> K e. CC ) | 
						
							| 18 | 7 17 | mpdan |  |-  ( ph -> K e. CC ) | 
						
							| 19 | 18 | ad2antrr |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ ( G ` z ) = ( G ` C ) ) -> K e. CC ) | 
						
							| 20 | 1 | adantr |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> F : X --> CC ) | 
						
							| 21 |  | eldifi |  |-  ( z e. ( Y \ { C } ) -> z e. Y ) | 
						
							| 22 |  | ffvelcdm |  |-  ( ( G : Y --> X /\ z e. Y ) -> ( G ` z ) e. X ) | 
						
							| 23 | 3 21 22 | syl2an |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> ( G ` z ) e. X ) | 
						
							| 24 | 20 23 | ffvelcdmd |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> ( F ` ( G ` z ) ) e. CC ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ -. ( G ` z ) = ( G ` C ) ) -> ( F ` ( G ` z ) ) e. CC ) | 
						
							| 26 | 3 | adantr |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> G : Y --> X ) | 
						
							| 27 | 6 13 4 | dvbss |  |-  ( ph -> dom ( T _D G ) C_ Y ) | 
						
							| 28 |  | reldv |  |-  Rel ( T _D G ) | 
						
							| 29 |  | releldm |  |-  ( ( Rel ( T _D G ) /\ C ( T _D G ) L ) -> C e. dom ( T _D G ) ) | 
						
							| 30 | 28 8 29 | sylancr |  |-  ( ph -> C e. dom ( T _D G ) ) | 
						
							| 31 | 27 30 | sseldd |  |-  ( ph -> C e. Y ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> C e. Y ) | 
						
							| 33 | 26 32 | ffvelcdmd |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> ( G ` C ) e. X ) | 
						
							| 34 | 20 33 | ffvelcdmd |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> ( F ` ( G ` C ) ) e. CC ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ -. ( G ` z ) = ( G ` C ) ) -> ( F ` ( G ` C ) ) e. CC ) | 
						
							| 36 | 25 35 | subcld |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ -. ( G ` z ) = ( G ` C ) ) -> ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) e. CC ) | 
						
							| 37 | 13 | ad2antrr |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ -. ( G ` z ) = ( G ` C ) ) -> G : Y --> CC ) | 
						
							| 38 | 21 | ad2antlr |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ -. ( G ` z ) = ( G ` C ) ) -> z e. Y ) | 
						
							| 39 | 37 38 | ffvelcdmd |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ -. ( G ` z ) = ( G ` C ) ) -> ( G ` z ) e. CC ) | 
						
							| 40 | 31 | ad2antrr |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ -. ( G ` z ) = ( G ` C ) ) -> C e. Y ) | 
						
							| 41 | 37 40 | ffvelcdmd |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ -. ( G ` z ) = ( G ` C ) ) -> ( G ` C ) e. CC ) | 
						
							| 42 | 39 41 | subcld |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ -. ( G ` z ) = ( G ` C ) ) -> ( ( G ` z ) - ( G ` C ) ) e. CC ) | 
						
							| 43 |  | simpr |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ -. ( G ` z ) = ( G ` C ) ) -> -. ( G ` z ) = ( G ` C ) ) | 
						
							| 44 | 39 41 | subeq0ad |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ -. ( G ` z ) = ( G ` C ) ) -> ( ( ( G ` z ) - ( G ` C ) ) = 0 <-> ( G ` z ) = ( G ` C ) ) ) | 
						
							| 45 | 44 | necon3abid |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ -. ( G ` z ) = ( G ` C ) ) -> ( ( ( G ` z ) - ( G ` C ) ) =/= 0 <-> -. ( G ` z ) = ( G ` C ) ) ) | 
						
							| 46 | 43 45 | mpbird |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ -. ( G ` z ) = ( G ` C ) ) -> ( ( G ` z ) - ( G ` C ) ) =/= 0 ) | 
						
							| 47 | 36 42 46 | divcld |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ -. ( G ` z ) = ( G ` C ) ) -> ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) e. CC ) | 
						
							| 48 | 19 47 | ifclda |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> if ( ( G ` z ) = ( G ` C ) , K , ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) ) e. CC ) | 
						
							| 49 | 4 6 | sstrd |  |-  ( ph -> Y C_ CC ) | 
						
							| 50 | 13 49 31 | dvlem |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) e. CC ) | 
						
							| 51 |  | ssidd |  |-  ( ph -> CC C_ CC ) | 
						
							| 52 | 9 | cnfldtopon |  |-  J e. ( TopOn ` CC ) | 
						
							| 53 |  | txtopon |  |-  ( ( J e. ( TopOn ` CC ) /\ J e. ( TopOn ` CC ) ) -> ( J tX J ) e. ( TopOn ` ( CC X. CC ) ) ) | 
						
							| 54 | 52 52 53 | mp2an |  |-  ( J tX J ) e. ( TopOn ` ( CC X. CC ) ) | 
						
							| 55 | 54 | toponrestid |  |-  ( J tX J ) = ( ( J tX J ) |`t ( CC X. CC ) ) | 
						
							| 56 | 23 | anim1i |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ ( G ` z ) =/= ( G ` C ) ) -> ( ( G ` z ) e. X /\ ( G ` z ) =/= ( G ` C ) ) ) | 
						
							| 57 |  | eldifsn |  |-  ( ( G ` z ) e. ( X \ { ( G ` C ) } ) <-> ( ( G ` z ) e. X /\ ( G ` z ) =/= ( G ` C ) ) ) | 
						
							| 58 | 56 57 | sylibr |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ ( G ` z ) =/= ( G ` C ) ) -> ( G ` z ) e. ( X \ { ( G ` C ) } ) ) | 
						
							| 59 | 58 | anasss |  |-  ( ( ph /\ ( z e. ( Y \ { C } ) /\ ( G ` z ) =/= ( G ` C ) ) ) -> ( G ` z ) e. ( X \ { ( G ` C ) } ) ) | 
						
							| 60 |  | eldifsni |  |-  ( y e. ( X \ { ( G ` C ) } ) -> y =/= ( G ` C ) ) | 
						
							| 61 |  | ifnefalse |  |-  ( y =/= ( G ` C ) -> if ( y = ( G ` C ) , K , ( ( ( F ` y ) - ( F ` ( G ` C ) ) ) / ( y - ( G ` C ) ) ) ) = ( ( ( F ` y ) - ( F ` ( G ` C ) ) ) / ( y - ( G ` C ) ) ) ) | 
						
							| 62 | 60 61 | syl |  |-  ( y e. ( X \ { ( G ` C ) } ) -> if ( y = ( G ` C ) , K , ( ( ( F ` y ) - ( F ` ( G ` C ) ) ) / ( y - ( G ` C ) ) ) ) = ( ( ( F ` y ) - ( F ` ( G ` C ) ) ) / ( y - ( G ` C ) ) ) ) | 
						
							| 63 | 62 | adantl |  |-  ( ( ph /\ y e. ( X \ { ( G ` C ) } ) ) -> if ( y = ( G ` C ) , K , ( ( ( F ` y ) - ( F ` ( G ` C ) ) ) / ( y - ( G ` C ) ) ) ) = ( ( ( F ` y ) - ( F ` ( G ` C ) ) ) / ( y - ( G ` C ) ) ) ) | 
						
							| 64 | 3 31 | ffvelcdmd |  |-  ( ph -> ( G ` C ) e. X ) | 
						
							| 65 | 1 12 64 | dvlem |  |-  ( ( ph /\ y e. ( X \ { ( G ` C ) } ) ) -> ( ( ( F ` y ) - ( F ` ( G ` C ) ) ) / ( y - ( G ` C ) ) ) e. CC ) | 
						
							| 66 | 63 65 | eqeltrd |  |-  ( ( ph /\ y e. ( X \ { ( G ` C ) } ) ) -> if ( y = ( G ` C ) , K , ( ( ( F ` y ) - ( F ` ( G ` C ) ) ) / ( y - ( G ` C ) ) ) ) e. CC ) | 
						
							| 67 |  | limcresi |  |-  ( G limCC C ) C_ ( ( G |` ( Y \ { C } ) ) limCC C ) | 
						
							| 68 | 3 | feqmptd |  |-  ( ph -> G = ( z e. Y |-> ( G ` z ) ) ) | 
						
							| 69 | 68 | reseq1d |  |-  ( ph -> ( G |` ( Y \ { C } ) ) = ( ( z e. Y |-> ( G ` z ) ) |` ( Y \ { C } ) ) ) | 
						
							| 70 |  | difss |  |-  ( Y \ { C } ) C_ Y | 
						
							| 71 |  | resmpt |  |-  ( ( Y \ { C } ) C_ Y -> ( ( z e. Y |-> ( G ` z ) ) |` ( Y \ { C } ) ) = ( z e. ( Y \ { C } ) |-> ( G ` z ) ) ) | 
						
							| 72 | 70 71 | ax-mp |  |-  ( ( z e. Y |-> ( G ` z ) ) |` ( Y \ { C } ) ) = ( z e. ( Y \ { C } ) |-> ( G ` z ) ) | 
						
							| 73 | 69 72 | eqtrdi |  |-  ( ph -> ( G |` ( Y \ { C } ) ) = ( z e. ( Y \ { C } ) |-> ( G ` z ) ) ) | 
						
							| 74 | 73 | oveq1d |  |-  ( ph -> ( ( G |` ( Y \ { C } ) ) limCC C ) = ( ( z e. ( Y \ { C } ) |-> ( G ` z ) ) limCC C ) ) | 
						
							| 75 | 67 74 | sseqtrid |  |-  ( ph -> ( G limCC C ) C_ ( ( z e. ( Y \ { C } ) |-> ( G ` z ) ) limCC C ) ) | 
						
							| 76 |  | eqid |  |-  ( J |`t Y ) = ( J |`t Y ) | 
						
							| 77 | 76 9 | dvcnp2 |  |-  ( ( ( T C_ CC /\ G : Y --> CC /\ Y C_ T ) /\ C e. dom ( T _D G ) ) -> G e. ( ( ( J |`t Y ) CnP J ) ` C ) ) | 
						
							| 78 | 6 13 4 30 77 | syl31anc |  |-  ( ph -> G e. ( ( ( J |`t Y ) CnP J ) ` C ) ) | 
						
							| 79 | 9 76 | cnplimc |  |-  ( ( Y C_ CC /\ C e. Y ) -> ( G e. ( ( ( J |`t Y ) CnP J ) ` C ) <-> ( G : Y --> CC /\ ( G ` C ) e. ( G limCC C ) ) ) ) | 
						
							| 80 | 49 31 79 | syl2anc |  |-  ( ph -> ( G e. ( ( ( J |`t Y ) CnP J ) ` C ) <-> ( G : Y --> CC /\ ( G ` C ) e. ( G limCC C ) ) ) ) | 
						
							| 81 | 78 80 | mpbid |  |-  ( ph -> ( G : Y --> CC /\ ( G ` C ) e. ( G limCC C ) ) ) | 
						
							| 82 | 81 | simprd |  |-  ( ph -> ( G ` C ) e. ( G limCC C ) ) | 
						
							| 83 | 75 82 | sseldd |  |-  ( ph -> ( G ` C ) e. ( ( z e. ( Y \ { C } ) |-> ( G ` z ) ) limCC C ) ) | 
						
							| 84 |  | eqid |  |-  ( J |`t S ) = ( J |`t S ) | 
						
							| 85 |  | eqid |  |-  ( y e. ( X \ { ( G ` C ) } ) |-> ( ( ( F ` y ) - ( F ` ( G ` C ) ) ) / ( y - ( G ` C ) ) ) ) = ( y e. ( X \ { ( G ` C ) } ) |-> ( ( ( F ` y ) - ( F ` ( G ` C ) ) ) / ( y - ( G ` C ) ) ) ) | 
						
							| 86 | 84 9 85 5 1 2 | eldv |  |-  ( ph -> ( ( G ` C ) ( S _D F ) K <-> ( ( G ` C ) e. ( ( int ` ( J |`t S ) ) ` X ) /\ K e. ( ( y e. ( X \ { ( G ` C ) } ) |-> ( ( ( F ` y ) - ( F ` ( G ` C ) ) ) / ( y - ( G ` C ) ) ) ) limCC ( G ` C ) ) ) ) ) | 
						
							| 87 | 7 86 | mpbid |  |-  ( ph -> ( ( G ` C ) e. ( ( int ` ( J |`t S ) ) ` X ) /\ K e. ( ( y e. ( X \ { ( G ` C ) } ) |-> ( ( ( F ` y ) - ( F ` ( G ` C ) ) ) / ( y - ( G ` C ) ) ) ) limCC ( G ` C ) ) ) ) | 
						
							| 88 | 87 | simprd |  |-  ( ph -> K e. ( ( y e. ( X \ { ( G ` C ) } ) |-> ( ( ( F ` y ) - ( F ` ( G ` C ) ) ) / ( y - ( G ` C ) ) ) ) limCC ( G ` C ) ) ) | 
						
							| 89 | 62 | mpteq2ia |  |-  ( y e. ( X \ { ( G ` C ) } ) |-> if ( y = ( G ` C ) , K , ( ( ( F ` y ) - ( F ` ( G ` C ) ) ) / ( y - ( G ` C ) ) ) ) ) = ( y e. ( X \ { ( G ` C ) } ) |-> ( ( ( F ` y ) - ( F ` ( G ` C ) ) ) / ( y - ( G ` C ) ) ) ) | 
						
							| 90 | 89 | oveq1i |  |-  ( ( y e. ( X \ { ( G ` C ) } ) |-> if ( y = ( G ` C ) , K , ( ( ( F ` y ) - ( F ` ( G ` C ) ) ) / ( y - ( G ` C ) ) ) ) ) limCC ( G ` C ) ) = ( ( y e. ( X \ { ( G ` C ) } ) |-> ( ( ( F ` y ) - ( F ` ( G ` C ) ) ) / ( y - ( G ` C ) ) ) ) limCC ( G ` C ) ) | 
						
							| 91 | 88 90 | eleqtrrdi |  |-  ( ph -> K e. ( ( y e. ( X \ { ( G ` C ) } ) |-> if ( y = ( G ` C ) , K , ( ( ( F ` y ) - ( F ` ( G ` C ) ) ) / ( y - ( G ` C ) ) ) ) ) limCC ( G ` C ) ) ) | 
						
							| 92 |  | eqeq1 |  |-  ( y = ( G ` z ) -> ( y = ( G ` C ) <-> ( G ` z ) = ( G ` C ) ) ) | 
						
							| 93 |  | fveq2 |  |-  ( y = ( G ` z ) -> ( F ` y ) = ( F ` ( G ` z ) ) ) | 
						
							| 94 | 93 | oveq1d |  |-  ( y = ( G ` z ) -> ( ( F ` y ) - ( F ` ( G ` C ) ) ) = ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) ) | 
						
							| 95 |  | oveq1 |  |-  ( y = ( G ` z ) -> ( y - ( G ` C ) ) = ( ( G ` z ) - ( G ` C ) ) ) | 
						
							| 96 | 94 95 | oveq12d |  |-  ( y = ( G ` z ) -> ( ( ( F ` y ) - ( F ` ( G ` C ) ) ) / ( y - ( G ` C ) ) ) = ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) ) | 
						
							| 97 | 92 96 | ifbieq2d |  |-  ( y = ( G ` z ) -> if ( y = ( G ` C ) , K , ( ( ( F ` y ) - ( F ` ( G ` C ) ) ) / ( y - ( G ` C ) ) ) ) = if ( ( G ` z ) = ( G ` C ) , K , ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) ) ) | 
						
							| 98 |  | iftrue |  |-  ( ( G ` z ) = ( G ` C ) -> if ( ( G ` z ) = ( G ` C ) , K , ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) ) = K ) | 
						
							| 99 | 98 | ad2antll |  |-  ( ( ph /\ ( z e. ( Y \ { C } ) /\ ( G ` z ) = ( G ` C ) ) ) -> if ( ( G ` z ) = ( G ` C ) , K , ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) ) = K ) | 
						
							| 100 | 59 66 83 91 97 99 | limcco |  |-  ( ph -> K e. ( ( z e. ( Y \ { C } ) |-> if ( ( G ` z ) = ( G ` C ) , K , ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) ) ) limCC C ) ) | 
						
							| 101 | 15 | simprd |  |-  ( ph -> L e. ( ( z e. ( Y \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) limCC C ) ) | 
						
							| 102 | 9 | mulcn |  |-  x. e. ( ( J tX J ) Cn J ) | 
						
							| 103 | 6 13 4 | dvcl |  |-  ( ( ph /\ C ( T _D G ) L ) -> L e. CC ) | 
						
							| 104 | 8 103 | mpdan |  |-  ( ph -> L e. CC ) | 
						
							| 105 | 18 104 | opelxpd |  |-  ( ph -> <. K , L >. e. ( CC X. CC ) ) | 
						
							| 106 | 54 | toponunii |  |-  ( CC X. CC ) = U. ( J tX J ) | 
						
							| 107 | 106 | cncnpi |  |-  ( ( x. e. ( ( J tX J ) Cn J ) /\ <. K , L >. e. ( CC X. CC ) ) -> x. e. ( ( ( J tX J ) CnP J ) ` <. K , L >. ) ) | 
						
							| 108 | 102 105 107 | sylancr |  |-  ( ph -> x. e. ( ( ( J tX J ) CnP J ) ` <. K , L >. ) ) | 
						
							| 109 | 48 50 51 51 9 55 100 101 108 | limccnp2 |  |-  ( ph -> ( K x. L ) e. ( ( z e. ( Y \ { C } ) |-> ( if ( ( G ` z ) = ( G ` C ) , K , ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) ) x. ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) ) limCC C ) ) | 
						
							| 110 |  | oveq1 |  |-  ( K = if ( ( G ` z ) = ( G ` C ) , K , ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) ) -> ( K x. ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) = ( if ( ( G ` z ) = ( G ` C ) , K , ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) ) x. ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) ) | 
						
							| 111 | 110 | eqeq1d |  |-  ( K = if ( ( G ` z ) = ( G ` C ) , K , ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) ) -> ( ( K x. ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) = ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( z - C ) ) <-> ( if ( ( G ` z ) = ( G ` C ) , K , ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) ) x. ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) = ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( z - C ) ) ) ) | 
						
							| 112 |  | oveq1 |  |-  ( ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) = if ( ( G ` z ) = ( G ` C ) , K , ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) ) -> ( ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) x. ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) = ( if ( ( G ` z ) = ( G ` C ) , K , ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) ) x. ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) ) | 
						
							| 113 | 112 | eqeq1d |  |-  ( ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) = if ( ( G ` z ) = ( G ` C ) , K , ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) ) -> ( ( ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) x. ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) = ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( z - C ) ) <-> ( if ( ( G ` z ) = ( G ` C ) , K , ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) ) x. ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) = ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( z - C ) ) ) ) | 
						
							| 114 | 19 | mul01d |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ ( G ` z ) = ( G ` C ) ) -> ( K x. 0 ) = 0 ) | 
						
							| 115 | 12 | adantr |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> X C_ CC ) | 
						
							| 116 | 115 23 | sseldd |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> ( G ` z ) e. CC ) | 
						
							| 117 | 115 33 | sseldd |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> ( G ` C ) e. CC ) | 
						
							| 118 | 116 117 | subeq0ad |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> ( ( ( G ` z ) - ( G ` C ) ) = 0 <-> ( G ` z ) = ( G ` C ) ) ) | 
						
							| 119 | 118 | biimpar |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ ( G ` z ) = ( G ` C ) ) -> ( ( G ` z ) - ( G ` C ) ) = 0 ) | 
						
							| 120 | 119 | oveq1d |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ ( G ` z ) = ( G ` C ) ) -> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) = ( 0 / ( z - C ) ) ) | 
						
							| 121 | 49 | adantr |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> Y C_ CC ) | 
						
							| 122 | 21 | adantl |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> z e. Y ) | 
						
							| 123 | 121 122 | sseldd |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> z e. CC ) | 
						
							| 124 | 121 32 | sseldd |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> C e. CC ) | 
						
							| 125 | 123 124 | subcld |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> ( z - C ) e. CC ) | 
						
							| 126 |  | eldifsni |  |-  ( z e. ( Y \ { C } ) -> z =/= C ) | 
						
							| 127 | 126 | adantl |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> z =/= C ) | 
						
							| 128 | 123 124 127 | subne0d |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> ( z - C ) =/= 0 ) | 
						
							| 129 | 125 128 | div0d |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> ( 0 / ( z - C ) ) = 0 ) | 
						
							| 130 | 129 | adantr |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ ( G ` z ) = ( G ` C ) ) -> ( 0 / ( z - C ) ) = 0 ) | 
						
							| 131 | 120 130 | eqtrd |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ ( G ` z ) = ( G ` C ) ) -> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) = 0 ) | 
						
							| 132 | 131 | oveq2d |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ ( G ` z ) = ( G ` C ) ) -> ( K x. ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) = ( K x. 0 ) ) | 
						
							| 133 |  | fveq2 |  |-  ( ( G ` z ) = ( G ` C ) -> ( F ` ( G ` z ) ) = ( F ` ( G ` C ) ) ) | 
						
							| 134 | 24 34 | subeq0ad |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) = 0 <-> ( F ` ( G ` z ) ) = ( F ` ( G ` C ) ) ) ) | 
						
							| 135 | 133 134 | imbitrrid |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> ( ( G ` z ) = ( G ` C ) -> ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) = 0 ) ) | 
						
							| 136 | 135 | imp |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ ( G ` z ) = ( G ` C ) ) -> ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) = 0 ) | 
						
							| 137 | 136 | oveq1d |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ ( G ` z ) = ( G ` C ) ) -> ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( z - C ) ) = ( 0 / ( z - C ) ) ) | 
						
							| 138 | 137 130 | eqtrd |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ ( G ` z ) = ( G ` C ) ) -> ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( z - C ) ) = 0 ) | 
						
							| 139 | 114 132 138 | 3eqtr4d |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ ( G ` z ) = ( G ` C ) ) -> ( K x. ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) = ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( z - C ) ) ) | 
						
							| 140 | 125 | adantr |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ -. ( G ` z ) = ( G ` C ) ) -> ( z - C ) e. CC ) | 
						
							| 141 | 128 | adantr |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ -. ( G ` z ) = ( G ` C ) ) -> ( z - C ) =/= 0 ) | 
						
							| 142 | 36 42 140 46 141 | dmdcan2d |  |-  ( ( ( ph /\ z e. ( Y \ { C } ) ) /\ -. ( G ` z ) = ( G ` C ) ) -> ( ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) x. ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) = ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( z - C ) ) ) | 
						
							| 143 | 111 113 139 142 | ifbothda |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> ( if ( ( G ` z ) = ( G ` C ) , K , ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) ) x. ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) = ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( z - C ) ) ) | 
						
							| 144 |  | fvco3 |  |-  ( ( G : Y --> X /\ z e. Y ) -> ( ( F o. G ) ` z ) = ( F ` ( G ` z ) ) ) | 
						
							| 145 | 3 21 144 | syl2an |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> ( ( F o. G ) ` z ) = ( F ` ( G ` z ) ) ) | 
						
							| 146 |  | fvco3 |  |-  ( ( G : Y --> X /\ C e. Y ) -> ( ( F o. G ) ` C ) = ( F ` ( G ` C ) ) ) | 
						
							| 147 | 3 31 146 | syl2anc |  |-  ( ph -> ( ( F o. G ) ` C ) = ( F ` ( G ` C ) ) ) | 
						
							| 148 | 147 | adantr |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> ( ( F o. G ) ` C ) = ( F ` ( G ` C ) ) ) | 
						
							| 149 | 145 148 | oveq12d |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> ( ( ( F o. G ) ` z ) - ( ( F o. G ) ` C ) ) = ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) ) | 
						
							| 150 | 149 | oveq1d |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> ( ( ( ( F o. G ) ` z ) - ( ( F o. G ) ` C ) ) / ( z - C ) ) = ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( z - C ) ) ) | 
						
							| 151 | 143 150 | eqtr4d |  |-  ( ( ph /\ z e. ( Y \ { C } ) ) -> ( if ( ( G ` z ) = ( G ` C ) , K , ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) ) x. ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) = ( ( ( ( F o. G ) ` z ) - ( ( F o. G ) ` C ) ) / ( z - C ) ) ) | 
						
							| 152 | 151 | mpteq2dva |  |-  ( ph -> ( z e. ( Y \ { C } ) |-> ( if ( ( G ` z ) = ( G ` C ) , K , ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) ) x. ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) ) = ( z e. ( Y \ { C } ) |-> ( ( ( ( F o. G ) ` z ) - ( ( F o. G ) ` C ) ) / ( z - C ) ) ) ) | 
						
							| 153 | 152 | oveq1d |  |-  ( ph -> ( ( z e. ( Y \ { C } ) |-> ( if ( ( G ` z ) = ( G ` C ) , K , ( ( ( F ` ( G ` z ) ) - ( F ` ( G ` C ) ) ) / ( ( G ` z ) - ( G ` C ) ) ) ) x. ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) ) limCC C ) = ( ( z e. ( Y \ { C } ) |-> ( ( ( ( F o. G ) ` z ) - ( ( F o. G ) ` C ) ) / ( z - C ) ) ) limCC C ) ) | 
						
							| 154 | 109 153 | eleqtrd |  |-  ( ph -> ( K x. L ) e. ( ( z e. ( Y \ { C } ) |-> ( ( ( ( F o. G ) ` z ) - ( ( F o. G ) ` C ) ) / ( z - C ) ) ) limCC C ) ) | 
						
							| 155 |  | eqid |  |-  ( z e. ( Y \ { C } ) |-> ( ( ( ( F o. G ) ` z ) - ( ( F o. G ) ` C ) ) / ( z - C ) ) ) = ( z e. ( Y \ { C } ) |-> ( ( ( ( F o. G ) ` z ) - ( ( F o. G ) ` C ) ) / ( z - C ) ) ) | 
						
							| 156 |  | fco |  |-  ( ( F : X --> CC /\ G : Y --> X ) -> ( F o. G ) : Y --> CC ) | 
						
							| 157 | 1 3 156 | syl2anc |  |-  ( ph -> ( F o. G ) : Y --> CC ) | 
						
							| 158 | 10 9 155 6 157 4 | eldv |  |-  ( ph -> ( C ( T _D ( F o. G ) ) ( K x. L ) <-> ( C e. ( ( int ` ( J |`t T ) ) ` Y ) /\ ( K x. L ) e. ( ( z e. ( Y \ { C } ) |-> ( ( ( ( F o. G ) ` z ) - ( ( F o. G ) ` C ) ) / ( z - C ) ) ) limCC C ) ) ) ) | 
						
							| 159 | 16 154 158 | mpbir2and |  |-  ( ph -> C ( T _D ( F o. G ) ) ( K x. L ) ) |