| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvco.f | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ℂ ) | 
						
							| 2 |  | dvco.x | ⊢ ( 𝜑  →  𝑋  ⊆  𝑆 ) | 
						
							| 3 |  | dvco.g | ⊢ ( 𝜑  →  𝐺 : 𝑌 ⟶ 𝑋 ) | 
						
							| 4 |  | dvco.y | ⊢ ( 𝜑  →  𝑌  ⊆  𝑇 ) | 
						
							| 5 |  | dvcobr.s | ⊢ ( 𝜑  →  𝑆  ⊆  ℂ ) | 
						
							| 6 |  | dvcobr.t | ⊢ ( 𝜑  →  𝑇  ⊆  ℂ ) | 
						
							| 7 |  | dvco.bf | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐶 ) ( 𝑆  D  𝐹 ) 𝐾 ) | 
						
							| 8 |  | dvco.bg | ⊢ ( 𝜑  →  𝐶 ( 𝑇  D  𝐺 ) 𝐿 ) | 
						
							| 9 |  | dvco.j | ⊢ 𝐽  =  ( TopOpen ‘ ℂfld ) | 
						
							| 10 |  | eqid | ⊢ ( 𝐽  ↾t  𝑇 )  =  ( 𝐽  ↾t  𝑇 ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  ↦  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) )  =  ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  ↦  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) ) | 
						
							| 12 | 2 5 | sstrd | ⊢ ( 𝜑  →  𝑋  ⊆  ℂ ) | 
						
							| 13 | 3 12 | fssd | ⊢ ( 𝜑  →  𝐺 : 𝑌 ⟶ ℂ ) | 
						
							| 14 | 10 9 11 6 13 4 | eldv | ⊢ ( 𝜑  →  ( 𝐶 ( 𝑇  D  𝐺 ) 𝐿  ↔  ( 𝐶  ∈  ( ( int ‘ ( 𝐽  ↾t  𝑇 ) ) ‘ 𝑌 )  ∧  𝐿  ∈  ( ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  ↦  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) )  limℂ  𝐶 ) ) ) ) | 
						
							| 15 | 8 14 | mpbid | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( ( int ‘ ( 𝐽  ↾t  𝑇 ) ) ‘ 𝑌 )  ∧  𝐿  ∈  ( ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  ↦  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) )  limℂ  𝐶 ) ) ) | 
						
							| 16 | 15 | simpld | ⊢ ( 𝜑  →  𝐶  ∈  ( ( int ‘ ( 𝐽  ↾t  𝑇 ) ) ‘ 𝑌 ) ) | 
						
							| 17 | 5 1 2 | dvcl | ⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ 𝐶 ) ( 𝑆  D  𝐹 ) 𝐾 )  →  𝐾  ∈  ℂ ) | 
						
							| 18 | 7 17 | mpdan | ⊢ ( 𝜑  →  𝐾  ∈  ℂ ) | 
						
							| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  𝐾  ∈  ℂ ) | 
						
							| 20 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  𝐹 : 𝑋 ⟶ ℂ ) | 
						
							| 21 |  | eldifi | ⊢ ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  →  𝑧  ∈  𝑌 ) | 
						
							| 22 |  | ffvelcdm | ⊢ ( ( 𝐺 : 𝑌 ⟶ 𝑋  ∧  𝑧  ∈  𝑌 )  →  ( 𝐺 ‘ 𝑧 )  ∈  𝑋 ) | 
						
							| 23 | 3 21 22 | syl2an | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  ( 𝐺 ‘ 𝑧 )  ∈  𝑋 ) | 
						
							| 24 | 20 23 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  ∈  ℂ ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ¬  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  ∈  ℂ ) | 
						
							| 26 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  𝐺 : 𝑌 ⟶ 𝑋 ) | 
						
							| 27 | 6 13 4 | dvbss | ⊢ ( 𝜑  →  dom  ( 𝑇  D  𝐺 )  ⊆  𝑌 ) | 
						
							| 28 |  | reldv | ⊢ Rel  ( 𝑇  D  𝐺 ) | 
						
							| 29 |  | releldm | ⊢ ( ( Rel  ( 𝑇  D  𝐺 )  ∧  𝐶 ( 𝑇  D  𝐺 ) 𝐿 )  →  𝐶  ∈  dom  ( 𝑇  D  𝐺 ) ) | 
						
							| 30 | 28 8 29 | sylancr | ⊢ ( 𝜑  →  𝐶  ∈  dom  ( 𝑇  D  𝐺 ) ) | 
						
							| 31 | 27 30 | sseldd | ⊢ ( 𝜑  →  𝐶  ∈  𝑌 ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  𝐶  ∈  𝑌 ) | 
						
							| 33 | 26 32 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  ( 𝐺 ‘ 𝐶 )  ∈  𝑋 ) | 
						
							| 34 | 20 33 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) )  ∈  ℂ ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ¬  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) )  ∈  ℂ ) | 
						
							| 36 | 25 35 | subcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ¬  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  ∈  ℂ ) | 
						
							| 37 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ¬  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  𝐺 : 𝑌 ⟶ ℂ ) | 
						
							| 38 | 21 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ¬  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  𝑧  ∈  𝑌 ) | 
						
							| 39 | 37 38 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ¬  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ( 𝐺 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 40 | 31 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ¬  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  𝐶  ∈  𝑌 ) | 
						
							| 41 | 37 40 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ¬  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ( 𝐺 ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 42 | 39 41 | subcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ¬  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  ∈  ℂ ) | 
						
							| 43 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ¬  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ¬  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ) | 
						
							| 44 | 39 41 | subeq0ad | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ¬  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  =  0  ↔  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ) ) | 
						
							| 45 | 44 | necon3abid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ¬  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  ≠  0  ↔  ¬  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ) ) | 
						
							| 46 | 43 45 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ¬  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  ≠  0 ) | 
						
							| 47 | 36 42 46 | divcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ¬  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) )  ∈  ℂ ) | 
						
							| 48 | 19 47 | ifclda | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  if ( ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) ) )  ∈  ℂ ) | 
						
							| 49 | 4 6 | sstrd | ⊢ ( 𝜑  →  𝑌  ⊆  ℂ ) | 
						
							| 50 | 13 49 31 | dvlem | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) )  ∈  ℂ ) | 
						
							| 51 |  | ssidd | ⊢ ( 𝜑  →  ℂ  ⊆  ℂ ) | 
						
							| 52 | 9 | cnfldtopon | ⊢ 𝐽  ∈  ( TopOn ‘ ℂ ) | 
						
							| 53 |  | txtopon | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ ℂ )  ∧  𝐽  ∈  ( TopOn ‘ ℂ ) )  →  ( 𝐽  ×t  𝐽 )  ∈  ( TopOn ‘ ( ℂ  ×  ℂ ) ) ) | 
						
							| 54 | 52 52 53 | mp2an | ⊢ ( 𝐽  ×t  𝐽 )  ∈  ( TopOn ‘ ( ℂ  ×  ℂ ) ) | 
						
							| 55 | 54 | toponrestid | ⊢ ( 𝐽  ×t  𝐽 )  =  ( ( 𝐽  ×t  𝐽 )  ↾t  ( ℂ  ×  ℂ ) ) | 
						
							| 56 | 23 | anim1i | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ( 𝐺 ‘ 𝑧 )  ≠  ( 𝐺 ‘ 𝐶 ) )  →  ( ( 𝐺 ‘ 𝑧 )  ∈  𝑋  ∧  ( 𝐺 ‘ 𝑧 )  ≠  ( 𝐺 ‘ 𝐶 ) ) ) | 
						
							| 57 |  | eldifsn | ⊢ ( ( 𝐺 ‘ 𝑧 )  ∈  ( 𝑋  ∖  { ( 𝐺 ‘ 𝐶 ) } )  ↔  ( ( 𝐺 ‘ 𝑧 )  ∈  𝑋  ∧  ( 𝐺 ‘ 𝑧 )  ≠  ( 𝐺 ‘ 𝐶 ) ) ) | 
						
							| 58 | 56 57 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ( 𝐺 ‘ 𝑧 )  ≠  ( 𝐺 ‘ 𝐶 ) )  →  ( 𝐺 ‘ 𝑧 )  ∈  ( 𝑋  ∖  { ( 𝐺 ‘ 𝐶 ) } ) ) | 
						
							| 59 | 58 | anasss | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  ∧  ( 𝐺 ‘ 𝑧 )  ≠  ( 𝐺 ‘ 𝐶 ) ) )  →  ( 𝐺 ‘ 𝑧 )  ∈  ( 𝑋  ∖  { ( 𝐺 ‘ 𝐶 ) } ) ) | 
						
							| 60 |  | eldifsni | ⊢ ( 𝑦  ∈  ( 𝑋  ∖  { ( 𝐺 ‘ 𝐶 ) } )  →  𝑦  ≠  ( 𝐺 ‘ 𝐶 ) ) | 
						
							| 61 |  | ifnefalse | ⊢ ( 𝑦  ≠  ( 𝐺 ‘ 𝐶 )  →  if ( 𝑦  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑦  −  ( 𝐺 ‘ 𝐶 ) ) ) )  =  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑦  −  ( 𝐺 ‘ 𝐶 ) ) ) ) | 
						
							| 62 | 60 61 | syl | ⊢ ( 𝑦  ∈  ( 𝑋  ∖  { ( 𝐺 ‘ 𝐶 ) } )  →  if ( 𝑦  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑦  −  ( 𝐺 ‘ 𝐶 ) ) ) )  =  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑦  −  ( 𝐺 ‘ 𝐶 ) ) ) ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋  ∖  { ( 𝐺 ‘ 𝐶 ) } ) )  →  if ( 𝑦  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑦  −  ( 𝐺 ‘ 𝐶 ) ) ) )  =  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑦  −  ( 𝐺 ‘ 𝐶 ) ) ) ) | 
						
							| 64 | 3 31 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐶 )  ∈  𝑋 ) | 
						
							| 65 | 1 12 64 | dvlem | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋  ∖  { ( 𝐺 ‘ 𝐶 ) } ) )  →  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑦  −  ( 𝐺 ‘ 𝐶 ) ) )  ∈  ℂ ) | 
						
							| 66 | 63 65 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋  ∖  { ( 𝐺 ‘ 𝐶 ) } ) )  →  if ( 𝑦  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑦  −  ( 𝐺 ‘ 𝐶 ) ) ) )  ∈  ℂ ) | 
						
							| 67 |  | limcresi | ⊢ ( 𝐺  limℂ  𝐶 )  ⊆  ( ( 𝐺  ↾  ( 𝑌  ∖  { 𝐶 } ) )  limℂ  𝐶 ) | 
						
							| 68 | 3 | feqmptd | ⊢ ( 𝜑  →  𝐺  =  ( 𝑧  ∈  𝑌  ↦  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 69 | 68 | reseq1d | ⊢ ( 𝜑  →  ( 𝐺  ↾  ( 𝑌  ∖  { 𝐶 } ) )  =  ( ( 𝑧  ∈  𝑌  ↦  ( 𝐺 ‘ 𝑧 ) )  ↾  ( 𝑌  ∖  { 𝐶 } ) ) ) | 
						
							| 70 |  | difss | ⊢ ( 𝑌  ∖  { 𝐶 } )  ⊆  𝑌 | 
						
							| 71 |  | resmpt | ⊢ ( ( 𝑌  ∖  { 𝐶 } )  ⊆  𝑌  →  ( ( 𝑧  ∈  𝑌  ↦  ( 𝐺 ‘ 𝑧 ) )  ↾  ( 𝑌  ∖  { 𝐶 } ) )  =  ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  ↦  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 72 | 70 71 | ax-mp | ⊢ ( ( 𝑧  ∈  𝑌  ↦  ( 𝐺 ‘ 𝑧 ) )  ↾  ( 𝑌  ∖  { 𝐶 } ) )  =  ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  ↦  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 73 | 69 72 | eqtrdi | ⊢ ( 𝜑  →  ( 𝐺  ↾  ( 𝑌  ∖  { 𝐶 } ) )  =  ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  ↦  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 74 | 73 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐺  ↾  ( 𝑌  ∖  { 𝐶 } ) )  limℂ  𝐶 )  =  ( ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  ↦  ( 𝐺 ‘ 𝑧 ) )  limℂ  𝐶 ) ) | 
						
							| 75 | 67 74 | sseqtrid | ⊢ ( 𝜑  →  ( 𝐺  limℂ  𝐶 )  ⊆  ( ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  ↦  ( 𝐺 ‘ 𝑧 ) )  limℂ  𝐶 ) ) | 
						
							| 76 |  | eqid | ⊢ ( 𝐽  ↾t  𝑌 )  =  ( 𝐽  ↾t  𝑌 ) | 
						
							| 77 | 76 9 | dvcnp2 | ⊢ ( ( ( 𝑇  ⊆  ℂ  ∧  𝐺 : 𝑌 ⟶ ℂ  ∧  𝑌  ⊆  𝑇 )  ∧  𝐶  ∈  dom  ( 𝑇  D  𝐺 ) )  →  𝐺  ∈  ( ( ( 𝐽  ↾t  𝑌 )  CnP  𝐽 ) ‘ 𝐶 ) ) | 
						
							| 78 | 6 13 4 30 77 | syl31anc | ⊢ ( 𝜑  →  𝐺  ∈  ( ( ( 𝐽  ↾t  𝑌 )  CnP  𝐽 ) ‘ 𝐶 ) ) | 
						
							| 79 | 9 76 | cnplimc | ⊢ ( ( 𝑌  ⊆  ℂ  ∧  𝐶  ∈  𝑌 )  →  ( 𝐺  ∈  ( ( ( 𝐽  ↾t  𝑌 )  CnP  𝐽 ) ‘ 𝐶 )  ↔  ( 𝐺 : 𝑌 ⟶ ℂ  ∧  ( 𝐺 ‘ 𝐶 )  ∈  ( 𝐺  limℂ  𝐶 ) ) ) ) | 
						
							| 80 | 49 31 79 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺  ∈  ( ( ( 𝐽  ↾t  𝑌 )  CnP  𝐽 ) ‘ 𝐶 )  ↔  ( 𝐺 : 𝑌 ⟶ ℂ  ∧  ( 𝐺 ‘ 𝐶 )  ∈  ( 𝐺  limℂ  𝐶 ) ) ) ) | 
						
							| 81 | 78 80 | mpbid | ⊢ ( 𝜑  →  ( 𝐺 : 𝑌 ⟶ ℂ  ∧  ( 𝐺 ‘ 𝐶 )  ∈  ( 𝐺  limℂ  𝐶 ) ) ) | 
						
							| 82 | 81 | simprd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐶 )  ∈  ( 𝐺  limℂ  𝐶 ) ) | 
						
							| 83 | 75 82 | sseldd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐶 )  ∈  ( ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  ↦  ( 𝐺 ‘ 𝑧 ) )  limℂ  𝐶 ) ) | 
						
							| 84 |  | eqid | ⊢ ( 𝐽  ↾t  𝑆 )  =  ( 𝐽  ↾t  𝑆 ) | 
						
							| 85 |  | eqid | ⊢ ( 𝑦  ∈  ( 𝑋  ∖  { ( 𝐺 ‘ 𝐶 ) } )  ↦  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑦  −  ( 𝐺 ‘ 𝐶 ) ) ) )  =  ( 𝑦  ∈  ( 𝑋  ∖  { ( 𝐺 ‘ 𝐶 ) } )  ↦  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑦  −  ( 𝐺 ‘ 𝐶 ) ) ) ) | 
						
							| 86 | 84 9 85 5 1 2 | eldv | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝐶 ) ( 𝑆  D  𝐹 ) 𝐾  ↔  ( ( 𝐺 ‘ 𝐶 )  ∈  ( ( int ‘ ( 𝐽  ↾t  𝑆 ) ) ‘ 𝑋 )  ∧  𝐾  ∈  ( ( 𝑦  ∈  ( 𝑋  ∖  { ( 𝐺 ‘ 𝐶 ) } )  ↦  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑦  −  ( 𝐺 ‘ 𝐶 ) ) ) )  limℂ  ( 𝐺 ‘ 𝐶 ) ) ) ) ) | 
						
							| 87 | 7 86 | mpbid | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝐶 )  ∈  ( ( int ‘ ( 𝐽  ↾t  𝑆 ) ) ‘ 𝑋 )  ∧  𝐾  ∈  ( ( 𝑦  ∈  ( 𝑋  ∖  { ( 𝐺 ‘ 𝐶 ) } )  ↦  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑦  −  ( 𝐺 ‘ 𝐶 ) ) ) )  limℂ  ( 𝐺 ‘ 𝐶 ) ) ) ) | 
						
							| 88 | 87 | simprd | ⊢ ( 𝜑  →  𝐾  ∈  ( ( 𝑦  ∈  ( 𝑋  ∖  { ( 𝐺 ‘ 𝐶 ) } )  ↦  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑦  −  ( 𝐺 ‘ 𝐶 ) ) ) )  limℂ  ( 𝐺 ‘ 𝐶 ) ) ) | 
						
							| 89 | 62 | mpteq2ia | ⊢ ( 𝑦  ∈  ( 𝑋  ∖  { ( 𝐺 ‘ 𝐶 ) } )  ↦  if ( 𝑦  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑦  −  ( 𝐺 ‘ 𝐶 ) ) ) ) )  =  ( 𝑦  ∈  ( 𝑋  ∖  { ( 𝐺 ‘ 𝐶 ) } )  ↦  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑦  −  ( 𝐺 ‘ 𝐶 ) ) ) ) | 
						
							| 90 | 89 | oveq1i | ⊢ ( ( 𝑦  ∈  ( 𝑋  ∖  { ( 𝐺 ‘ 𝐶 ) } )  ↦  if ( 𝑦  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑦  −  ( 𝐺 ‘ 𝐶 ) ) ) ) )  limℂ  ( 𝐺 ‘ 𝐶 ) )  =  ( ( 𝑦  ∈  ( 𝑋  ∖  { ( 𝐺 ‘ 𝐶 ) } )  ↦  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑦  −  ( 𝐺 ‘ 𝐶 ) ) ) )  limℂ  ( 𝐺 ‘ 𝐶 ) ) | 
						
							| 91 | 88 90 | eleqtrrdi | ⊢ ( 𝜑  →  𝐾  ∈  ( ( 𝑦  ∈  ( 𝑋  ∖  { ( 𝐺 ‘ 𝐶 ) } )  ↦  if ( 𝑦  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑦  −  ( 𝐺 ‘ 𝐶 ) ) ) ) )  limℂ  ( 𝐺 ‘ 𝐶 ) ) ) | 
						
							| 92 |  | eqeq1 | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑧 )  →  ( 𝑦  =  ( 𝐺 ‘ 𝐶 )  ↔  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ) ) | 
						
							| 93 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑧 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 94 | 93 | oveq1d | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑧 )  →  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  =  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) | 
						
							| 95 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑧 )  →  ( 𝑦  −  ( 𝐺 ‘ 𝐶 ) )  =  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) ) | 
						
							| 96 | 94 95 | oveq12d | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑧 )  →  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑦  −  ( 𝐺 ‘ 𝐶 ) ) )  =  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) ) ) | 
						
							| 97 | 92 96 | ifbieq2d | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑧 )  →  if ( 𝑦  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑦  −  ( 𝐺 ‘ 𝐶 ) ) ) )  =  if ( ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) ) ) ) | 
						
							| 98 |  | iftrue | ⊢ ( ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 )  →  if ( ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) ) )  =  𝐾 ) | 
						
							| 99 | 98 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ) )  →  if ( ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) ) )  =  𝐾 ) | 
						
							| 100 | 59 66 83 91 97 99 | limcco | ⊢ ( 𝜑  →  𝐾  ∈  ( ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  ↦  if ( ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) ) ) )  limℂ  𝐶 ) ) | 
						
							| 101 | 15 | simprd | ⊢ ( 𝜑  →  𝐿  ∈  ( ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  ↦  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) )  limℂ  𝐶 ) ) | 
						
							| 102 | 9 | mulcn | ⊢  ·   ∈  ( ( 𝐽  ×t  𝐽 )  Cn  𝐽 ) | 
						
							| 103 | 6 13 4 | dvcl | ⊢ ( ( 𝜑  ∧  𝐶 ( 𝑇  D  𝐺 ) 𝐿 )  →  𝐿  ∈  ℂ ) | 
						
							| 104 | 8 103 | mpdan | ⊢ ( 𝜑  →  𝐿  ∈  ℂ ) | 
						
							| 105 | 18 104 | opelxpd | ⊢ ( 𝜑  →  〈 𝐾 ,  𝐿 〉  ∈  ( ℂ  ×  ℂ ) ) | 
						
							| 106 | 54 | toponunii | ⊢ ( ℂ  ×  ℂ )  =  ∪  ( 𝐽  ×t  𝐽 ) | 
						
							| 107 | 106 | cncnpi | ⊢ ( (  ·   ∈  ( ( 𝐽  ×t  𝐽 )  Cn  𝐽 )  ∧  〈 𝐾 ,  𝐿 〉  ∈  ( ℂ  ×  ℂ ) )  →   ·   ∈  ( ( ( 𝐽  ×t  𝐽 )  CnP  𝐽 ) ‘ 〈 𝐾 ,  𝐿 〉 ) ) | 
						
							| 108 | 102 105 107 | sylancr | ⊢ ( 𝜑  →   ·   ∈  ( ( ( 𝐽  ×t  𝐽 )  CnP  𝐽 ) ‘ 〈 𝐾 ,  𝐿 〉 ) ) | 
						
							| 109 | 48 50 51 51 9 55 100 101 108 | limccnp2 | ⊢ ( 𝜑  →  ( 𝐾  ·  𝐿 )  ∈  ( ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  ↦  ( if ( ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) ) )  ·  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) ) )  limℂ  𝐶 ) ) | 
						
							| 110 |  | oveq1 | ⊢ ( 𝐾  =  if ( ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) ) )  →  ( 𝐾  ·  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) )  =  ( if ( ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) ) )  ·  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) ) ) | 
						
							| 111 | 110 | eqeq1d | ⊢ ( 𝐾  =  if ( ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) ) )  →  ( ( 𝐾  ·  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) )  =  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑧  −  𝐶 ) )  ↔  ( if ( ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) ) )  ·  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) )  =  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑧  −  𝐶 ) ) ) ) | 
						
							| 112 |  | oveq1 | ⊢ ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) )  =  if ( ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) ) )  →  ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) )  ·  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) )  =  ( if ( ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) ) )  ·  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) ) ) | 
						
							| 113 | 112 | eqeq1d | ⊢ ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) )  =  if ( ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) ) )  →  ( ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) )  ·  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) )  =  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑧  −  𝐶 ) )  ↔  ( if ( ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) ) )  ·  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) )  =  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑧  −  𝐶 ) ) ) ) | 
						
							| 114 | 19 | mul01d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ( 𝐾  ·  0 )  =  0 ) | 
						
							| 115 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  𝑋  ⊆  ℂ ) | 
						
							| 116 | 115 23 | sseldd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  ( 𝐺 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 117 | 115 33 | sseldd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  ( 𝐺 ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 118 | 116 117 | subeq0ad | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  =  0  ↔  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ) ) | 
						
							| 119 | 118 | biimpar | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  =  0 ) | 
						
							| 120 | 119 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) )  =  ( 0  /  ( 𝑧  −  𝐶 ) ) ) | 
						
							| 121 | 49 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  𝑌  ⊆  ℂ ) | 
						
							| 122 | 21 | adantl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  𝑧  ∈  𝑌 ) | 
						
							| 123 | 121 122 | sseldd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  𝑧  ∈  ℂ ) | 
						
							| 124 | 121 32 | sseldd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  𝐶  ∈  ℂ ) | 
						
							| 125 | 123 124 | subcld | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  ( 𝑧  −  𝐶 )  ∈  ℂ ) | 
						
							| 126 |  | eldifsni | ⊢ ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  →  𝑧  ≠  𝐶 ) | 
						
							| 127 | 126 | adantl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  𝑧  ≠  𝐶 ) | 
						
							| 128 | 123 124 127 | subne0d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  ( 𝑧  −  𝐶 )  ≠  0 ) | 
						
							| 129 | 125 128 | div0d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  ( 0  /  ( 𝑧  −  𝐶 ) )  =  0 ) | 
						
							| 130 | 129 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ( 0  /  ( 𝑧  −  𝐶 ) )  =  0 ) | 
						
							| 131 | 120 130 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) )  =  0 ) | 
						
							| 132 | 131 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ( 𝐾  ·  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) )  =  ( 𝐾  ·  0 ) ) | 
						
							| 133 |  | fveq2 | ⊢ ( ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) | 
						
							| 134 | 24 34 | subeq0ad | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  =  0  ↔  ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) | 
						
							| 135 | 133 134 | imbitrrid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  ( ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  =  0 ) ) | 
						
							| 136 | 135 | imp | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  =  0 ) | 
						
							| 137 | 136 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑧  −  𝐶 ) )  =  ( 0  /  ( 𝑧  −  𝐶 ) ) ) | 
						
							| 138 | 137 130 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑧  −  𝐶 ) )  =  0 ) | 
						
							| 139 | 114 132 138 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ( 𝐾  ·  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) )  =  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑧  −  𝐶 ) ) ) | 
						
							| 140 | 125 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ¬  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ( 𝑧  −  𝐶 )  ∈  ℂ ) | 
						
							| 141 | 128 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ¬  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ( 𝑧  −  𝐶 )  ≠  0 ) | 
						
							| 142 | 36 42 140 46 141 | dmdcan2d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  ∧  ¬  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) )  →  ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) )  ·  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) )  =  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑧  −  𝐶 ) ) ) | 
						
							| 143 | 111 113 139 142 | ifbothda | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  ( if ( ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) ) )  ·  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) )  =  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑧  −  𝐶 ) ) ) | 
						
							| 144 |  | fvco3 | ⊢ ( ( 𝐺 : 𝑌 ⟶ 𝑋  ∧  𝑧  ∈  𝑌 )  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑧 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 145 | 3 21 144 | syl2an | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑧 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 146 |  | fvco3 | ⊢ ( ( 𝐺 : 𝑌 ⟶ 𝑋  ∧  𝐶  ∈  𝑌 )  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝐶 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) | 
						
							| 147 | 3 31 146 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝐶 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) | 
						
							| 148 | 147 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝐶 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) | 
						
							| 149 | 145 148 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  ( ( ( 𝐹  ∘  𝐺 ) ‘ 𝑧 )  −  ( ( 𝐹  ∘  𝐺 ) ‘ 𝐶 ) )  =  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) | 
						
							| 150 | 149 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  ( ( ( ( 𝐹  ∘  𝐺 ) ‘ 𝑧 )  −  ( ( 𝐹  ∘  𝐺 ) ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) )  =  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( 𝑧  −  𝐶 ) ) ) | 
						
							| 151 | 143 150 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  ∖  { 𝐶 } ) )  →  ( if ( ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) ) )  ·  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) )  =  ( ( ( ( 𝐹  ∘  𝐺 ) ‘ 𝑧 )  −  ( ( 𝐹  ∘  𝐺 ) ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) ) | 
						
							| 152 | 151 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  ↦  ( if ( ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) ) )  ·  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) ) )  =  ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  ↦  ( ( ( ( 𝐹  ∘  𝐺 ) ‘ 𝑧 )  −  ( ( 𝐹  ∘  𝐺 ) ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) ) ) | 
						
							| 153 | 152 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  ↦  ( if ( ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐶 ) ,  𝐾 ,  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) )  −  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  /  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) ) ) )  ·  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) ) )  limℂ  𝐶 )  =  ( ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  ↦  ( ( ( ( 𝐹  ∘  𝐺 ) ‘ 𝑧 )  −  ( ( 𝐹  ∘  𝐺 ) ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) )  limℂ  𝐶 ) ) | 
						
							| 154 | 109 153 | eleqtrd | ⊢ ( 𝜑  →  ( 𝐾  ·  𝐿 )  ∈  ( ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  ↦  ( ( ( ( 𝐹  ∘  𝐺 ) ‘ 𝑧 )  −  ( ( 𝐹  ∘  𝐺 ) ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) )  limℂ  𝐶 ) ) | 
						
							| 155 |  | eqid | ⊢ ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  ↦  ( ( ( ( 𝐹  ∘  𝐺 ) ‘ 𝑧 )  −  ( ( 𝐹  ∘  𝐺 ) ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) )  =  ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  ↦  ( ( ( ( 𝐹  ∘  𝐺 ) ‘ 𝑧 )  −  ( ( 𝐹  ∘  𝐺 ) ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) ) | 
						
							| 156 |  | fco | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ  ∧  𝐺 : 𝑌 ⟶ 𝑋 )  →  ( 𝐹  ∘  𝐺 ) : 𝑌 ⟶ ℂ ) | 
						
							| 157 | 1 3 156 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐺 ) : 𝑌 ⟶ ℂ ) | 
						
							| 158 | 10 9 155 6 157 4 | eldv | ⊢ ( 𝜑  →  ( 𝐶 ( 𝑇  D  ( 𝐹  ∘  𝐺 ) ) ( 𝐾  ·  𝐿 )  ↔  ( 𝐶  ∈  ( ( int ‘ ( 𝐽  ↾t  𝑇 ) ) ‘ 𝑌 )  ∧  ( 𝐾  ·  𝐿 )  ∈  ( ( 𝑧  ∈  ( 𝑌  ∖  { 𝐶 } )  ↦  ( ( ( ( 𝐹  ∘  𝐺 ) ‘ 𝑧 )  −  ( ( 𝐹  ∘  𝐺 ) ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) )  limℂ  𝐶 ) ) ) ) | 
						
							| 159 | 16 154 158 | mpbir2and | ⊢ ( 𝜑  →  𝐶 ( 𝑇  D  ( 𝐹  ∘  𝐺 ) ) ( 𝐾  ·  𝐿 ) ) |