Step |
Hyp |
Ref |
Expression |
1 |
|
simp31 |
|- ( ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) -> F e. ( D -cn-> CC ) ) |
2 |
|
cncff |
|- ( F e. ( D -cn-> CC ) -> F : D --> CC ) |
3 |
1 2
|
syl |
|- ( ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) -> F : D --> CC ) |
4 |
|
ffun |
|- ( F : D --> CC -> Fun F ) |
5 |
3 4
|
syl |
|- ( ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) -> Fun F ) |
6 |
5
|
3ad2ant3 |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> Fun F ) |
7 |
|
iccconn |
|- ( ( A e. RR /\ B e. RR ) -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn ) |
8 |
7
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ U e. RR ) -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn ) |
9 |
8
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn ) |
10 |
|
simpr1 |
|- ( ( D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) -> F e. ( D -cn-> CC ) ) |
11 |
10 2
|
syl |
|- ( ( D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) -> F : D --> CC ) |
12 |
11
|
anim2i |
|- ( ( ( A [,] B ) C_ D /\ ( D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( A [,] B ) C_ D /\ F : D --> CC ) ) |
13 |
12
|
3impb |
|- ( ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) -> ( ( A [,] B ) C_ D /\ F : D --> CC ) ) |
14 |
13
|
3ad2ant3 |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( A [,] B ) C_ D /\ F : D --> CC ) ) |
15 |
4
|
adantl |
|- ( ( ( A [,] B ) C_ D /\ F : D --> CC ) -> Fun F ) |
16 |
|
fdm |
|- ( F : D --> CC -> dom F = D ) |
17 |
16
|
sseq2d |
|- ( F : D --> CC -> ( ( A [,] B ) C_ dom F <-> ( A [,] B ) C_ D ) ) |
18 |
17
|
biimparc |
|- ( ( ( A [,] B ) C_ D /\ F : D --> CC ) -> ( A [,] B ) C_ dom F ) |
19 |
15 18
|
jca |
|- ( ( ( A [,] B ) C_ D /\ F : D --> CC ) -> ( Fun F /\ ( A [,] B ) C_ dom F ) ) |
20 |
14 19
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( Fun F /\ ( A [,] B ) C_ dom F ) ) |
21 |
|
fores |
|- ( ( Fun F /\ ( A [,] B ) C_ dom F ) -> ( F |` ( A [,] B ) ) : ( A [,] B ) -onto-> ( F " ( A [,] B ) ) ) |
22 |
20 21
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F |` ( A [,] B ) ) : ( A [,] B ) -onto-> ( F " ( A [,] B ) ) ) |
23 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
24 |
|
simp332 |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F " ( A [,] B ) ) C_ RR ) |
25 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
26 |
25
|
restuni |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( F " ( A [,] B ) ) C_ RR ) -> ( F " ( A [,] B ) ) = U. ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) ) |
27 |
23 24 26
|
sylancr |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F " ( A [,] B ) ) = U. ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) ) |
28 |
|
foeq3 |
|- ( ( F " ( A [,] B ) ) = U. ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) -> ( ( F |` ( A [,] B ) ) : ( A [,] B ) -onto-> ( F " ( A [,] B ) ) <-> ( F |` ( A [,] B ) ) : ( A [,] B ) -onto-> U. ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) ) ) |
29 |
27 28
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( F |` ( A [,] B ) ) : ( A [,] B ) -onto-> ( F " ( A [,] B ) ) <-> ( F |` ( A [,] B ) ) : ( A [,] B ) -onto-> U. ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) ) ) |
30 |
22 29
|
mpbid |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F |` ( A [,] B ) ) : ( A [,] B ) -onto-> U. ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) ) |
31 |
|
simp331 |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> F e. ( D -cn-> CC ) ) |
32 |
|
ssid |
|- CC C_ CC |
33 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
34 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t D ) = ( ( TopOpen ` CCfld ) |`t D ) |
35 |
33
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
36 |
33
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
37 |
36
|
toponunii |
|- CC = U. ( TopOpen ` CCfld ) |
38 |
37
|
restid |
|- ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) |
39 |
35 38
|
ax-mp |
|- ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) |
40 |
39
|
eqcomi |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
41 |
33 34 40
|
cncfcn |
|- ( ( D C_ CC /\ CC C_ CC ) -> ( D -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t D ) Cn ( TopOpen ` CCfld ) ) ) |
42 |
32 41
|
mpan2 |
|- ( D C_ CC -> ( D -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t D ) Cn ( TopOpen ` CCfld ) ) ) |
43 |
42
|
3ad2ant2 |
|- ( ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) -> ( D -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t D ) Cn ( TopOpen ` CCfld ) ) ) |
44 |
43
|
3ad2ant3 |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( D -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t D ) Cn ( TopOpen ` CCfld ) ) ) |
45 |
31 44
|
eleqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> F e. ( ( ( TopOpen ` CCfld ) |`t D ) Cn ( TopOpen ` CCfld ) ) ) |
46 |
|
simp31 |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( A [,] B ) C_ D ) |
47 |
|
simp32 |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> D C_ CC ) |
48 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ D C_ CC ) -> ( ( TopOpen ` CCfld ) |`t D ) e. ( TopOn ` D ) ) |
49 |
36 47 48
|
sylancr |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( TopOpen ` CCfld ) |`t D ) e. ( TopOn ` D ) ) |
50 |
|
toponuni |
|- ( ( ( TopOpen ` CCfld ) |`t D ) e. ( TopOn ` D ) -> D = U. ( ( TopOpen ` CCfld ) |`t D ) ) |
51 |
49 50
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> D = U. ( ( TopOpen ` CCfld ) |`t D ) ) |
52 |
46 51
|
sseqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( A [,] B ) C_ U. ( ( TopOpen ` CCfld ) |`t D ) ) |
53 |
|
eqid |
|- U. ( ( TopOpen ` CCfld ) |`t D ) = U. ( ( TopOpen ` CCfld ) |`t D ) |
54 |
53
|
cnrest |
|- ( ( F e. ( ( ( TopOpen ` CCfld ) |`t D ) Cn ( TopOpen ` CCfld ) ) /\ ( A [,] B ) C_ U. ( ( TopOpen ` CCfld ) |`t D ) ) -> ( F |` ( A [,] B ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t D ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) ) |
55 |
45 52 54
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F |` ( A [,] B ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t D ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) ) |
56 |
35
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( TopOpen ` CCfld ) e. Top ) |
57 |
|
cnex |
|- CC e. _V |
58 |
|
ssexg |
|- ( ( D C_ CC /\ CC e. _V ) -> D e. _V ) |
59 |
47 57 58
|
sylancl |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> D e. _V ) |
60 |
|
restabs |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( A [,] B ) C_ D /\ D e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t D ) |`t ( A [,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) |
61 |
56 46 59 60
|
syl3anc |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( ( TopOpen ` CCfld ) |`t D ) |`t ( A [,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) |
62 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
63 |
62
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ U e. RR ) -> ( A [,] B ) C_ RR ) |
64 |
63
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( A [,] B ) C_ RR ) |
65 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
66 |
33 65
|
rerest |
|- ( ( A [,] B ) C_ RR -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) |
67 |
64 66
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) |
68 |
61 67
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( ( TopOpen ` CCfld ) |`t D ) |`t ( A [,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) |
69 |
68
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( ( ( TopOpen ` CCfld ) |`t D ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) = ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) ) |
70 |
55 69
|
eleqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F |` ( A [,] B ) ) e. ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) ) |
71 |
36
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
72 |
|
df-ima |
|- ( F " ( A [,] B ) ) = ran ( F |` ( A [,] B ) ) |
73 |
72
|
eqimss2i |
|- ran ( F |` ( A [,] B ) ) C_ ( F " ( A [,] B ) ) |
74 |
73
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ran ( F |` ( A [,] B ) ) C_ ( F " ( A [,] B ) ) ) |
75 |
|
ax-resscn |
|- RR C_ CC |
76 |
24 75
|
sstrdi |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F " ( A [,] B ) ) C_ CC ) |
77 |
|
cnrest2 |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( F |` ( A [,] B ) ) C_ ( F " ( A [,] B ) ) /\ ( F " ( A [,] B ) ) C_ CC ) -> ( ( F |` ( A [,] B ) ) e. ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) <-> ( F |` ( A [,] B ) ) e. ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( ( TopOpen ` CCfld ) |`t ( F " ( A [,] B ) ) ) ) ) ) |
78 |
71 74 76 77
|
syl3anc |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( F |` ( A [,] B ) ) e. ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) <-> ( F |` ( A [,] B ) ) e. ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( ( TopOpen ` CCfld ) |`t ( F " ( A [,] B ) ) ) ) ) ) |
79 |
70 78
|
mpbid |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F |` ( A [,] B ) ) e. ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( ( TopOpen ` CCfld ) |`t ( F " ( A [,] B ) ) ) ) ) |
80 |
33 65
|
rerest |
|- ( ( F " ( A [,] B ) ) C_ RR -> ( ( TopOpen ` CCfld ) |`t ( F " ( A [,] B ) ) ) = ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) ) |
81 |
24 80
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( TopOpen ` CCfld ) |`t ( F " ( A [,] B ) ) ) = ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) ) |
82 |
81
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( ( TopOpen ` CCfld ) |`t ( F " ( A [,] B ) ) ) ) = ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) ) ) |
83 |
79 82
|
eleqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F |` ( A [,] B ) ) e. ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) ) ) |
84 |
|
eqid |
|- U. ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) = U. ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) |
85 |
84
|
cnconn |
|- ( ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn /\ ( F |` ( A [,] B ) ) : ( A [,] B ) -onto-> U. ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) /\ ( F |` ( A [,] B ) ) e. ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) ) ) -> ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) e. Conn ) |
86 |
9 30 83 85
|
syl3anc |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) e. Conn ) |
87 |
|
reconn |
|- ( ( F " ( A [,] B ) ) C_ RR -> ( ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) e. Conn <-> A. x e. ( F " ( A [,] B ) ) A. y e. ( F " ( A [,] B ) ) ( x [,] y ) C_ ( F " ( A [,] B ) ) ) ) |
88 |
87
|
3ad2ant2 |
|- ( ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) -> ( ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) e. Conn <-> A. x e. ( F " ( A [,] B ) ) A. y e. ( F " ( A [,] B ) ) ( x [,] y ) C_ ( F " ( A [,] B ) ) ) ) |
89 |
88
|
3ad2ant3 |
|- ( ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) -> ( ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) e. Conn <-> A. x e. ( F " ( A [,] B ) ) A. y e. ( F " ( A [,] B ) ) ( x [,] y ) C_ ( F " ( A [,] B ) ) ) ) |
90 |
89
|
3ad2ant3 |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) e. Conn <-> A. x e. ( F " ( A [,] B ) ) A. y e. ( F " ( A [,] B ) ) ( x [,] y ) C_ ( F " ( A [,] B ) ) ) ) |
91 |
86 90
|
mpbid |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> A. x e. ( F " ( A [,] B ) ) A. y e. ( F " ( A [,] B ) ) ( x [,] y ) C_ ( F " ( A [,] B ) ) ) |
92 |
|
simp11 |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> A e. RR ) |
93 |
92
|
rexrd |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> A e. RR* ) |
94 |
|
simp12 |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> B e. RR ) |
95 |
94
|
rexrd |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> B e. RR* ) |
96 |
|
ltle |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B -> A <_ B ) ) |
97 |
96
|
imp |
|- ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> A <_ B ) |
98 |
97
|
3adantl3 |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B ) -> A <_ B ) |
99 |
98
|
3adant3 |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> A <_ B ) |
100 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
101 |
93 95 99 100
|
syl3anc |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> A e. ( A [,] B ) ) |
102 |
|
funfvima2 |
|- ( ( Fun F /\ ( A [,] B ) C_ dom F ) -> ( A e. ( A [,] B ) -> ( F ` A ) e. ( F " ( A [,] B ) ) ) ) |
103 |
20 101 102
|
sylc |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F ` A ) e. ( F " ( A [,] B ) ) ) |
104 |
|
ubicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
105 |
93 95 99 104
|
syl3anc |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> B e. ( A [,] B ) ) |
106 |
|
funfvima2 |
|- ( ( Fun F /\ ( A [,] B ) C_ dom F ) -> ( B e. ( A [,] B ) -> ( F ` B ) e. ( F " ( A [,] B ) ) ) ) |
107 |
20 105 106
|
sylc |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F ` B ) e. ( F " ( A [,] B ) ) ) |
108 |
|
oveq1 |
|- ( x = ( F ` A ) -> ( x [,] y ) = ( ( F ` A ) [,] y ) ) |
109 |
108
|
sseq1d |
|- ( x = ( F ` A ) -> ( ( x [,] y ) C_ ( F " ( A [,] B ) ) <-> ( ( F ` A ) [,] y ) C_ ( F " ( A [,] B ) ) ) ) |
110 |
|
oveq2 |
|- ( y = ( F ` B ) -> ( ( F ` A ) [,] y ) = ( ( F ` A ) [,] ( F ` B ) ) ) |
111 |
110
|
sseq1d |
|- ( y = ( F ` B ) -> ( ( ( F ` A ) [,] y ) C_ ( F " ( A [,] B ) ) <-> ( ( F ` A ) [,] ( F ` B ) ) C_ ( F " ( A [,] B ) ) ) ) |
112 |
109 111
|
rspc2v |
|- ( ( ( F ` A ) e. ( F " ( A [,] B ) ) /\ ( F ` B ) e. ( F " ( A [,] B ) ) ) -> ( A. x e. ( F " ( A [,] B ) ) A. y e. ( F " ( A [,] B ) ) ( x [,] y ) C_ ( F " ( A [,] B ) ) -> ( ( F ` A ) [,] ( F ` B ) ) C_ ( F " ( A [,] B ) ) ) ) |
113 |
103 107 112
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( A. x e. ( F " ( A [,] B ) ) A. y e. ( F " ( A [,] B ) ) ( x [,] y ) C_ ( F " ( A [,] B ) ) -> ( ( F ` A ) [,] ( F ` B ) ) C_ ( F " ( A [,] B ) ) ) ) |
114 |
91 113
|
mpd |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( F ` A ) [,] ( F ` B ) ) C_ ( F " ( A [,] B ) ) ) |
115 |
|
ioossicc |
|- ( ( F ` A ) (,) ( F ` B ) ) C_ ( ( F ` A ) [,] ( F ` B ) ) |
116 |
115
|
sseli |
|- ( U e. ( ( F ` A ) (,) ( F ` B ) ) -> U e. ( ( F ` A ) [,] ( F ` B ) ) ) |
117 |
116
|
3ad2ant3 |
|- ( ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) -> U e. ( ( F ` A ) [,] ( F ` B ) ) ) |
118 |
117
|
3ad2ant3 |
|- ( ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) -> U e. ( ( F ` A ) [,] ( F ` B ) ) ) |
119 |
118
|
3ad2ant3 |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> U e. ( ( F ` A ) [,] ( F ` B ) ) ) |
120 |
114 119
|
sseldd |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> U e. ( F " ( A [,] B ) ) ) |
121 |
|
fvelima |
|- ( ( Fun F /\ U e. ( F " ( A [,] B ) ) ) -> E. x e. ( A [,] B ) ( F ` x ) = U ) |
122 |
6 120 121
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> E. x e. ( A [,] B ) ( F ` x ) = U ) |
123 |
|
simpl1 |
|- ( ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) -> x e. RR* ) |
124 |
123
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) -> x e. RR* ) ) |
125 |
|
simprr |
|- ( ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) /\ ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) -> ( F ` x ) = U ) |
126 |
24 103
|
sseldd |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F ` A ) e. RR ) |
127 |
|
simp333 |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> U e. ( ( F ` A ) (,) ( F ` B ) ) ) |
128 |
126
|
rexrd |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F ` A ) e. RR* ) |
129 |
24 107
|
sseldd |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F ` B ) e. RR ) |
130 |
129
|
rexrd |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F ` B ) e. RR* ) |
131 |
|
elioo2 |
|- ( ( ( F ` A ) e. RR* /\ ( F ` B ) e. RR* ) -> ( U e. ( ( F ` A ) (,) ( F ` B ) ) <-> ( U e. RR /\ ( F ` A ) < U /\ U < ( F ` B ) ) ) ) |
132 |
128 130 131
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( U e. ( ( F ` A ) (,) ( F ` B ) ) <-> ( U e. RR /\ ( F ` A ) < U /\ U < ( F ` B ) ) ) ) |
133 |
127 132
|
mpbid |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( U e. RR /\ ( F ` A ) < U /\ U < ( F ` B ) ) ) |
134 |
133
|
simp2d |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F ` A ) < U ) |
135 |
126 134
|
gtned |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> U =/= ( F ` A ) ) |
136 |
135
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) /\ ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) -> U =/= ( F ` A ) ) |
137 |
125 136
|
eqnetrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) /\ ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) -> ( F ` x ) =/= ( F ` A ) ) |
138 |
137
|
neneqd |
|- ( ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) /\ ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) -> -. ( F ` x ) = ( F ` A ) ) |
139 |
|
fveq2 |
|- ( x = A -> ( F ` x ) = ( F ` A ) ) |
140 |
138 139
|
nsyl |
|- ( ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) /\ ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) -> -. x = A ) |
141 |
|
simp13 |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> U e. RR ) |
142 |
133
|
simp3d |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> U < ( F ` B ) ) |
143 |
141 142
|
ltned |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> U =/= ( F ` B ) ) |
144 |
143
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) /\ ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) -> U =/= ( F ` B ) ) |
145 |
125 144
|
eqnetrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) /\ ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) -> ( F ` x ) =/= ( F ` B ) ) |
146 |
145
|
neneqd |
|- ( ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) /\ ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) -> -. ( F ` x ) = ( F ` B ) ) |
147 |
|
fveq2 |
|- ( x = B -> ( F ` x ) = ( F ` B ) ) |
148 |
146 147
|
nsyl |
|- ( ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) /\ ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) -> -. x = B ) |
149 |
|
simprl3 |
|- ( ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) /\ ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) -> ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) |
150 |
140 148 149
|
ecase13d |
|- ( ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) /\ ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) -> ( A < x /\ x < B ) ) |
151 |
150
|
ex |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) -> ( A < x /\ x < B ) ) ) |
152 |
124 151
|
jcad |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) -> ( x e. RR* /\ ( A < x /\ x < B ) ) ) ) |
153 |
|
3anass |
|- ( ( x e. RR* /\ A < x /\ x < B ) <-> ( x e. RR* /\ ( A < x /\ x < B ) ) ) |
154 |
152 153
|
syl6ibr |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) -> ( x e. RR* /\ A < x /\ x < B ) ) ) |
155 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
156 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
157 |
|
elicc3 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( x e. ( A [,] B ) <-> ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) ) ) |
158 |
155 156 157
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) ) ) |
159 |
158
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ U e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) ) ) |
160 |
159
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( x e. ( A [,] B ) <-> ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) ) ) |
161 |
160
|
anbi1d |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( x e. ( A [,] B ) /\ ( F ` x ) = U ) <-> ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) ) |
162 |
|
elioo1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( x e. ( A (,) B ) <-> ( x e. RR* /\ A < x /\ x < B ) ) ) |
163 |
155 156 162
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A (,) B ) <-> ( x e. RR* /\ A < x /\ x < B ) ) ) |
164 |
163
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ U e. RR ) -> ( x e. ( A (,) B ) <-> ( x e. RR* /\ A < x /\ x < B ) ) ) |
165 |
164
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( x e. ( A (,) B ) <-> ( x e. RR* /\ A < x /\ x < B ) ) ) |
166 |
154 161 165
|
3imtr4d |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( x e. ( A [,] B ) /\ ( F ` x ) = U ) -> x e. ( A (,) B ) ) ) |
167 |
|
simpr |
|- ( ( x e. ( A [,] B ) /\ ( F ` x ) = U ) -> ( F ` x ) = U ) |
168 |
167
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( x e. ( A [,] B ) /\ ( F ` x ) = U ) -> ( F ` x ) = U ) ) |
169 |
166 168
|
jcad |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( x e. ( A [,] B ) /\ ( F ` x ) = U ) -> ( x e. ( A (,) B ) /\ ( F ` x ) = U ) ) ) |
170 |
169
|
reximdv2 |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( E. x e. ( A [,] B ) ( F ` x ) = U -> E. x e. ( A (,) B ) ( F ` x ) = U ) ) |
171 |
122 170
|
mpd |
|- ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> E. x e. ( A (,) B ) ( F ` x ) = U ) |