| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp31 |  |-  ( ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) -> F e. ( D -cn-> CC ) ) | 
						
							| 2 |  | cncff |  |-  ( F e. ( D -cn-> CC ) -> F : D --> CC ) | 
						
							| 3 | 1 2 | syl |  |-  ( ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) -> F : D --> CC ) | 
						
							| 4 |  | ffun |  |-  ( F : D --> CC -> Fun F ) | 
						
							| 5 | 3 4 | syl |  |-  ( ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) -> Fun F ) | 
						
							| 6 | 5 | 3ad2ant3 |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> Fun F ) | 
						
							| 7 |  | iccconn |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn ) | 
						
							| 8 | 7 | 3adant3 |  |-  ( ( A e. RR /\ B e. RR /\ U e. RR ) -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn ) | 
						
							| 9 | 8 | 3ad2ant1 |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn ) | 
						
							| 10 |  | simpr1 |  |-  ( ( D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) -> F e. ( D -cn-> CC ) ) | 
						
							| 11 | 10 2 | syl |  |-  ( ( D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) -> F : D --> CC ) | 
						
							| 12 | 11 | anim2i |  |-  ( ( ( A [,] B ) C_ D /\ ( D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( A [,] B ) C_ D /\ F : D --> CC ) ) | 
						
							| 13 | 12 | 3impb |  |-  ( ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) -> ( ( A [,] B ) C_ D /\ F : D --> CC ) ) | 
						
							| 14 | 13 | 3ad2ant3 |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( A [,] B ) C_ D /\ F : D --> CC ) ) | 
						
							| 15 | 4 | adantl |  |-  ( ( ( A [,] B ) C_ D /\ F : D --> CC ) -> Fun F ) | 
						
							| 16 |  | fdm |  |-  ( F : D --> CC -> dom F = D ) | 
						
							| 17 | 16 | sseq2d |  |-  ( F : D --> CC -> ( ( A [,] B ) C_ dom F <-> ( A [,] B ) C_ D ) ) | 
						
							| 18 | 17 | biimparc |  |-  ( ( ( A [,] B ) C_ D /\ F : D --> CC ) -> ( A [,] B ) C_ dom F ) | 
						
							| 19 | 15 18 | jca |  |-  ( ( ( A [,] B ) C_ D /\ F : D --> CC ) -> ( Fun F /\ ( A [,] B ) C_ dom F ) ) | 
						
							| 20 | 14 19 | syl |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( Fun F /\ ( A [,] B ) C_ dom F ) ) | 
						
							| 21 |  | fores |  |-  ( ( Fun F /\ ( A [,] B ) C_ dom F ) -> ( F |` ( A [,] B ) ) : ( A [,] B ) -onto-> ( F " ( A [,] B ) ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F |` ( A [,] B ) ) : ( A [,] B ) -onto-> ( F " ( A [,] B ) ) ) | 
						
							| 23 |  | retop |  |-  ( topGen ` ran (,) ) e. Top | 
						
							| 24 |  | simp332 |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F " ( A [,] B ) ) C_ RR ) | 
						
							| 25 |  | uniretop |  |-  RR = U. ( topGen ` ran (,) ) | 
						
							| 26 | 25 | restuni |  |-  ( ( ( topGen ` ran (,) ) e. Top /\ ( F " ( A [,] B ) ) C_ RR ) -> ( F " ( A [,] B ) ) = U. ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) ) | 
						
							| 27 | 23 24 26 | sylancr |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F " ( A [,] B ) ) = U. ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) ) | 
						
							| 28 |  | foeq3 |  |-  ( ( F " ( A [,] B ) ) = U. ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) -> ( ( F |` ( A [,] B ) ) : ( A [,] B ) -onto-> ( F " ( A [,] B ) ) <-> ( F |` ( A [,] B ) ) : ( A [,] B ) -onto-> U. ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) ) ) | 
						
							| 29 | 27 28 | syl |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( F |` ( A [,] B ) ) : ( A [,] B ) -onto-> ( F " ( A [,] B ) ) <-> ( F |` ( A [,] B ) ) : ( A [,] B ) -onto-> U. ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) ) ) | 
						
							| 30 | 22 29 | mpbid |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F |` ( A [,] B ) ) : ( A [,] B ) -onto-> U. ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) ) | 
						
							| 31 |  | simp331 |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> F e. ( D -cn-> CC ) ) | 
						
							| 32 |  | ssid |  |-  CC C_ CC | 
						
							| 33 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 34 |  | eqid |  |-  ( ( TopOpen ` CCfld ) |`t D ) = ( ( TopOpen ` CCfld ) |`t D ) | 
						
							| 35 | 33 | cnfldtop |  |-  ( TopOpen ` CCfld ) e. Top | 
						
							| 36 | 33 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 37 | 36 | toponunii |  |-  CC = U. ( TopOpen ` CCfld ) | 
						
							| 38 | 37 | restid |  |-  ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) | 
						
							| 39 | 35 38 | ax-mp |  |-  ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) | 
						
							| 40 | 39 | eqcomi |  |-  ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) | 
						
							| 41 | 33 34 40 | cncfcn |  |-  ( ( D C_ CC /\ CC C_ CC ) -> ( D -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t D ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 42 | 32 41 | mpan2 |  |-  ( D C_ CC -> ( D -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t D ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 43 | 42 | 3ad2ant2 |  |-  ( ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) -> ( D -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t D ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 44 | 43 | 3ad2ant3 |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( D -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t D ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 45 | 31 44 | eleqtrd |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> F e. ( ( ( TopOpen ` CCfld ) |`t D ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 46 |  | simp31 |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( A [,] B ) C_ D ) | 
						
							| 47 |  | simp32 |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> D C_ CC ) | 
						
							| 48 |  | resttopon |  |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ D C_ CC ) -> ( ( TopOpen ` CCfld ) |`t D ) e. ( TopOn ` D ) ) | 
						
							| 49 | 36 47 48 | sylancr |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( TopOpen ` CCfld ) |`t D ) e. ( TopOn ` D ) ) | 
						
							| 50 |  | toponuni |  |-  ( ( ( TopOpen ` CCfld ) |`t D ) e. ( TopOn ` D ) -> D = U. ( ( TopOpen ` CCfld ) |`t D ) ) | 
						
							| 51 | 49 50 | syl |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> D = U. ( ( TopOpen ` CCfld ) |`t D ) ) | 
						
							| 52 | 46 51 | sseqtrd |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( A [,] B ) C_ U. ( ( TopOpen ` CCfld ) |`t D ) ) | 
						
							| 53 |  | eqid |  |-  U. ( ( TopOpen ` CCfld ) |`t D ) = U. ( ( TopOpen ` CCfld ) |`t D ) | 
						
							| 54 | 53 | cnrest |  |-  ( ( F e. ( ( ( TopOpen ` CCfld ) |`t D ) Cn ( TopOpen ` CCfld ) ) /\ ( A [,] B ) C_ U. ( ( TopOpen ` CCfld ) |`t D ) ) -> ( F |` ( A [,] B ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t D ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 55 | 45 52 54 | syl2anc |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F |` ( A [,] B ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t D ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 56 | 35 | a1i |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( TopOpen ` CCfld ) e. Top ) | 
						
							| 57 |  | cnex |  |-  CC e. _V | 
						
							| 58 |  | ssexg |  |-  ( ( D C_ CC /\ CC e. _V ) -> D e. _V ) | 
						
							| 59 | 47 57 58 | sylancl |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> D e. _V ) | 
						
							| 60 |  | restabs |  |-  ( ( ( TopOpen ` CCfld ) e. Top /\ ( A [,] B ) C_ D /\ D e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t D ) |`t ( A [,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) | 
						
							| 61 | 56 46 59 60 | syl3anc |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( ( TopOpen ` CCfld ) |`t D ) |`t ( A [,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) | 
						
							| 62 |  | iccssre |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) | 
						
							| 63 | 62 | 3adant3 |  |-  ( ( A e. RR /\ B e. RR /\ U e. RR ) -> ( A [,] B ) C_ RR ) | 
						
							| 64 | 63 | 3ad2ant1 |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( A [,] B ) C_ RR ) | 
						
							| 65 |  | eqid |  |-  ( topGen ` ran (,) ) = ( topGen ` ran (,) ) | 
						
							| 66 | 33 65 | rerest |  |-  ( ( A [,] B ) C_ RR -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) | 
						
							| 67 | 64 66 | syl |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) | 
						
							| 68 | 61 67 | eqtrd |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( ( TopOpen ` CCfld ) |`t D ) |`t ( A [,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) | 
						
							| 69 | 68 | oveq1d |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( ( ( TopOpen ` CCfld ) |`t D ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) = ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 70 | 55 69 | eleqtrd |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F |` ( A [,] B ) ) e. ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 71 | 36 | a1i |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) | 
						
							| 72 |  | df-ima |  |-  ( F " ( A [,] B ) ) = ran ( F |` ( A [,] B ) ) | 
						
							| 73 | 72 | eqimss2i |  |-  ran ( F |` ( A [,] B ) ) C_ ( F " ( A [,] B ) ) | 
						
							| 74 | 73 | a1i |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ran ( F |` ( A [,] B ) ) C_ ( F " ( A [,] B ) ) ) | 
						
							| 75 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 76 | 24 75 | sstrdi |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F " ( A [,] B ) ) C_ CC ) | 
						
							| 77 |  | cnrest2 |  |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( F |` ( A [,] B ) ) C_ ( F " ( A [,] B ) ) /\ ( F " ( A [,] B ) ) C_ CC ) -> ( ( F |` ( A [,] B ) ) e. ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) <-> ( F |` ( A [,] B ) ) e. ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( ( TopOpen ` CCfld ) |`t ( F " ( A [,] B ) ) ) ) ) ) | 
						
							| 78 | 71 74 76 77 | syl3anc |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( F |` ( A [,] B ) ) e. ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) <-> ( F |` ( A [,] B ) ) e. ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( ( TopOpen ` CCfld ) |`t ( F " ( A [,] B ) ) ) ) ) ) | 
						
							| 79 | 70 78 | mpbid |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F |` ( A [,] B ) ) e. ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( ( TopOpen ` CCfld ) |`t ( F " ( A [,] B ) ) ) ) ) | 
						
							| 80 | 33 65 | rerest |  |-  ( ( F " ( A [,] B ) ) C_ RR -> ( ( TopOpen ` CCfld ) |`t ( F " ( A [,] B ) ) ) = ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) ) | 
						
							| 81 | 24 80 | syl |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( TopOpen ` CCfld ) |`t ( F " ( A [,] B ) ) ) = ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) ) | 
						
							| 82 | 81 | oveq2d |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( ( TopOpen ` CCfld ) |`t ( F " ( A [,] B ) ) ) ) = ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) ) ) | 
						
							| 83 | 79 82 | eleqtrd |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F |` ( A [,] B ) ) e. ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) ) ) | 
						
							| 84 |  | eqid |  |-  U. ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) = U. ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) | 
						
							| 85 | 84 | cnconn |  |-  ( ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn /\ ( F |` ( A [,] B ) ) : ( A [,] B ) -onto-> U. ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) /\ ( F |` ( A [,] B ) ) e. ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) ) ) -> ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) e. Conn ) | 
						
							| 86 | 9 30 83 85 | syl3anc |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) e. Conn ) | 
						
							| 87 |  | reconn |  |-  ( ( F " ( A [,] B ) ) C_ RR -> ( ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) e. Conn <-> A. x e. ( F " ( A [,] B ) ) A. y e. ( F " ( A [,] B ) ) ( x [,] y ) C_ ( F " ( A [,] B ) ) ) ) | 
						
							| 88 | 87 | 3ad2ant2 |  |-  ( ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) -> ( ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) e. Conn <-> A. x e. ( F " ( A [,] B ) ) A. y e. ( F " ( A [,] B ) ) ( x [,] y ) C_ ( F " ( A [,] B ) ) ) ) | 
						
							| 89 | 88 | 3ad2ant3 |  |-  ( ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) -> ( ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) e. Conn <-> A. x e. ( F " ( A [,] B ) ) A. y e. ( F " ( A [,] B ) ) ( x [,] y ) C_ ( F " ( A [,] B ) ) ) ) | 
						
							| 90 | 89 | 3ad2ant3 |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( ( topGen ` ran (,) ) |`t ( F " ( A [,] B ) ) ) e. Conn <-> A. x e. ( F " ( A [,] B ) ) A. y e. ( F " ( A [,] B ) ) ( x [,] y ) C_ ( F " ( A [,] B ) ) ) ) | 
						
							| 91 | 86 90 | mpbid |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> A. x e. ( F " ( A [,] B ) ) A. y e. ( F " ( A [,] B ) ) ( x [,] y ) C_ ( F " ( A [,] B ) ) ) | 
						
							| 92 |  | simp11 |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> A e. RR ) | 
						
							| 93 | 92 | rexrd |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> A e. RR* ) | 
						
							| 94 |  | simp12 |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> B e. RR ) | 
						
							| 95 | 94 | rexrd |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> B e. RR* ) | 
						
							| 96 |  | ltle |  |-  ( ( A e. RR /\ B e. RR ) -> ( A < B -> A <_ B ) ) | 
						
							| 97 | 96 | imp |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> A <_ B ) | 
						
							| 98 | 97 | 3adantl3 |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B ) -> A <_ B ) | 
						
							| 99 | 98 | 3adant3 |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> A <_ B ) | 
						
							| 100 |  | lbicc2 |  |-  ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) | 
						
							| 101 | 93 95 99 100 | syl3anc |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> A e. ( A [,] B ) ) | 
						
							| 102 |  | funfvima2 |  |-  ( ( Fun F /\ ( A [,] B ) C_ dom F ) -> ( A e. ( A [,] B ) -> ( F ` A ) e. ( F " ( A [,] B ) ) ) ) | 
						
							| 103 | 20 101 102 | sylc |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F ` A ) e. ( F " ( A [,] B ) ) ) | 
						
							| 104 |  | ubicc2 |  |-  ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) | 
						
							| 105 | 93 95 99 104 | syl3anc |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> B e. ( A [,] B ) ) | 
						
							| 106 |  | funfvima2 |  |-  ( ( Fun F /\ ( A [,] B ) C_ dom F ) -> ( B e. ( A [,] B ) -> ( F ` B ) e. ( F " ( A [,] B ) ) ) ) | 
						
							| 107 | 20 105 106 | sylc |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F ` B ) e. ( F " ( A [,] B ) ) ) | 
						
							| 108 |  | oveq1 |  |-  ( x = ( F ` A ) -> ( x [,] y ) = ( ( F ` A ) [,] y ) ) | 
						
							| 109 | 108 | sseq1d |  |-  ( x = ( F ` A ) -> ( ( x [,] y ) C_ ( F " ( A [,] B ) ) <-> ( ( F ` A ) [,] y ) C_ ( F " ( A [,] B ) ) ) ) | 
						
							| 110 |  | oveq2 |  |-  ( y = ( F ` B ) -> ( ( F ` A ) [,] y ) = ( ( F ` A ) [,] ( F ` B ) ) ) | 
						
							| 111 | 110 | sseq1d |  |-  ( y = ( F ` B ) -> ( ( ( F ` A ) [,] y ) C_ ( F " ( A [,] B ) ) <-> ( ( F ` A ) [,] ( F ` B ) ) C_ ( F " ( A [,] B ) ) ) ) | 
						
							| 112 | 109 111 | rspc2v |  |-  ( ( ( F ` A ) e. ( F " ( A [,] B ) ) /\ ( F ` B ) e. ( F " ( A [,] B ) ) ) -> ( A. x e. ( F " ( A [,] B ) ) A. y e. ( F " ( A [,] B ) ) ( x [,] y ) C_ ( F " ( A [,] B ) ) -> ( ( F ` A ) [,] ( F ` B ) ) C_ ( F " ( A [,] B ) ) ) ) | 
						
							| 113 | 103 107 112 | syl2anc |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( A. x e. ( F " ( A [,] B ) ) A. y e. ( F " ( A [,] B ) ) ( x [,] y ) C_ ( F " ( A [,] B ) ) -> ( ( F ` A ) [,] ( F ` B ) ) C_ ( F " ( A [,] B ) ) ) ) | 
						
							| 114 | 91 113 | mpd |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( F ` A ) [,] ( F ` B ) ) C_ ( F " ( A [,] B ) ) ) | 
						
							| 115 |  | ioossicc |  |-  ( ( F ` A ) (,) ( F ` B ) ) C_ ( ( F ` A ) [,] ( F ` B ) ) | 
						
							| 116 | 115 | sseli |  |-  ( U e. ( ( F ` A ) (,) ( F ` B ) ) -> U e. ( ( F ` A ) [,] ( F ` B ) ) ) | 
						
							| 117 | 116 | 3ad2ant3 |  |-  ( ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) -> U e. ( ( F ` A ) [,] ( F ` B ) ) ) | 
						
							| 118 | 117 | 3ad2ant3 |  |-  ( ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) -> U e. ( ( F ` A ) [,] ( F ` B ) ) ) | 
						
							| 119 | 118 | 3ad2ant3 |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> U e. ( ( F ` A ) [,] ( F ` B ) ) ) | 
						
							| 120 | 114 119 | sseldd |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> U e. ( F " ( A [,] B ) ) ) | 
						
							| 121 |  | fvelima |  |-  ( ( Fun F /\ U e. ( F " ( A [,] B ) ) ) -> E. x e. ( A [,] B ) ( F ` x ) = U ) | 
						
							| 122 | 6 120 121 | syl2anc |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> E. x e. ( A [,] B ) ( F ` x ) = U ) | 
						
							| 123 |  | simpl1 |  |-  ( ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) -> x e. RR* ) | 
						
							| 124 | 123 | a1i |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) -> x e. RR* ) ) | 
						
							| 125 |  | simprr |  |-  ( ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) /\ ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) -> ( F ` x ) = U ) | 
						
							| 126 | 24 103 | sseldd |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F ` A ) e. RR ) | 
						
							| 127 |  | simp333 |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> U e. ( ( F ` A ) (,) ( F ` B ) ) ) | 
						
							| 128 | 126 | rexrd |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F ` A ) e. RR* ) | 
						
							| 129 | 24 107 | sseldd |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F ` B ) e. RR ) | 
						
							| 130 | 129 | rexrd |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F ` B ) e. RR* ) | 
						
							| 131 |  | elioo2 |  |-  ( ( ( F ` A ) e. RR* /\ ( F ` B ) e. RR* ) -> ( U e. ( ( F ` A ) (,) ( F ` B ) ) <-> ( U e. RR /\ ( F ` A ) < U /\ U < ( F ` B ) ) ) ) | 
						
							| 132 | 128 130 131 | syl2anc |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( U e. ( ( F ` A ) (,) ( F ` B ) ) <-> ( U e. RR /\ ( F ` A ) < U /\ U < ( F ` B ) ) ) ) | 
						
							| 133 | 127 132 | mpbid |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( U e. RR /\ ( F ` A ) < U /\ U < ( F ` B ) ) ) | 
						
							| 134 | 133 | simp2d |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( F ` A ) < U ) | 
						
							| 135 | 126 134 | gtned |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> U =/= ( F ` A ) ) | 
						
							| 136 | 135 | adantr |  |-  ( ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) /\ ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) -> U =/= ( F ` A ) ) | 
						
							| 137 | 125 136 | eqnetrd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) /\ ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) -> ( F ` x ) =/= ( F ` A ) ) | 
						
							| 138 | 137 | neneqd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) /\ ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) -> -. ( F ` x ) = ( F ` A ) ) | 
						
							| 139 |  | fveq2 |  |-  ( x = A -> ( F ` x ) = ( F ` A ) ) | 
						
							| 140 | 138 139 | nsyl |  |-  ( ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) /\ ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) -> -. x = A ) | 
						
							| 141 |  | simp13 |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> U e. RR ) | 
						
							| 142 | 133 | simp3d |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> U < ( F ` B ) ) | 
						
							| 143 | 141 142 | ltned |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> U =/= ( F ` B ) ) | 
						
							| 144 | 143 | adantr |  |-  ( ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) /\ ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) -> U =/= ( F ` B ) ) | 
						
							| 145 | 125 144 | eqnetrd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) /\ ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) -> ( F ` x ) =/= ( F ` B ) ) | 
						
							| 146 | 145 | neneqd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) /\ ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) -> -. ( F ` x ) = ( F ` B ) ) | 
						
							| 147 |  | fveq2 |  |-  ( x = B -> ( F ` x ) = ( F ` B ) ) | 
						
							| 148 | 146 147 | nsyl |  |-  ( ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) /\ ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) -> -. x = B ) | 
						
							| 149 |  | simprl3 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) /\ ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) -> ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) | 
						
							| 150 | 140 148 149 | ecase13d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) /\ ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) -> ( A < x /\ x < B ) ) | 
						
							| 151 | 150 | ex |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) -> ( A < x /\ x < B ) ) ) | 
						
							| 152 | 124 151 | jcad |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) -> ( x e. RR* /\ ( A < x /\ x < B ) ) ) ) | 
						
							| 153 |  | 3anass |  |-  ( ( x e. RR* /\ A < x /\ x < B ) <-> ( x e. RR* /\ ( A < x /\ x < B ) ) ) | 
						
							| 154 | 152 153 | imbitrrdi |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) -> ( x e. RR* /\ A < x /\ x < B ) ) ) | 
						
							| 155 |  | rexr |  |-  ( A e. RR -> A e. RR* ) | 
						
							| 156 |  | rexr |  |-  ( B e. RR -> B e. RR* ) | 
						
							| 157 |  | elicc3 |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( x e. ( A [,] B ) <-> ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) ) ) | 
						
							| 158 | 155 156 157 | syl2an |  |-  ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) ) ) | 
						
							| 159 | 158 | 3adant3 |  |-  ( ( A e. RR /\ B e. RR /\ U e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) ) ) | 
						
							| 160 | 159 | 3ad2ant1 |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( x e. ( A [,] B ) <-> ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) ) ) | 
						
							| 161 | 160 | anbi1d |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( x e. ( A [,] B ) /\ ( F ` x ) = U ) <-> ( ( x e. RR* /\ A <_ B /\ ( x = A \/ ( A < x /\ x < B ) \/ x = B ) ) /\ ( F ` x ) = U ) ) ) | 
						
							| 162 |  | elioo1 |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( x e. ( A (,) B ) <-> ( x e. RR* /\ A < x /\ x < B ) ) ) | 
						
							| 163 | 155 156 162 | syl2an |  |-  ( ( A e. RR /\ B e. RR ) -> ( x e. ( A (,) B ) <-> ( x e. RR* /\ A < x /\ x < B ) ) ) | 
						
							| 164 | 163 | 3adant3 |  |-  ( ( A e. RR /\ B e. RR /\ U e. RR ) -> ( x e. ( A (,) B ) <-> ( x e. RR* /\ A < x /\ x < B ) ) ) | 
						
							| 165 | 164 | 3ad2ant1 |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( x e. ( A (,) B ) <-> ( x e. RR* /\ A < x /\ x < B ) ) ) | 
						
							| 166 | 154 161 165 | 3imtr4d |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( x e. ( A [,] B ) /\ ( F ` x ) = U ) -> x e. ( A (,) B ) ) ) | 
						
							| 167 |  | simpr |  |-  ( ( x e. ( A [,] B ) /\ ( F ` x ) = U ) -> ( F ` x ) = U ) | 
						
							| 168 | 167 | a1i |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( x e. ( A [,] B ) /\ ( F ` x ) = U ) -> ( F ` x ) = U ) ) | 
						
							| 169 | 166 168 | jcad |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( ( x e. ( A [,] B ) /\ ( F ` x ) = U ) -> ( x e. ( A (,) B ) /\ ( F ` x ) = U ) ) ) | 
						
							| 170 | 169 | reximdv2 |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> ( E. x e. ( A [,] B ) ( F ` x ) = U -> E. x e. ( A (,) B ) ( F ` x ) = U ) ) | 
						
							| 171 | 122 170 | mpd |  |-  ( ( ( A e. RR /\ B e. RR /\ U e. RR ) /\ A < B /\ ( ( A [,] B ) C_ D /\ D C_ CC /\ ( F e. ( D -cn-> CC ) /\ ( F " ( A [,] B ) ) C_ RR /\ U e. ( ( F ` A ) (,) ( F ` B ) ) ) ) ) -> E. x e. ( A (,) B ) ( F ` x ) = U ) |