| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp31 |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) |
| 2 |
|
cncff |
⊢ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) → 𝐹 : 𝐷 ⟶ ℂ ) |
| 3 |
1 2
|
syl |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) → 𝐹 : 𝐷 ⟶ ℂ ) |
| 4 |
|
ffun |
⊢ ( 𝐹 : 𝐷 ⟶ ℂ → Fun 𝐹 ) |
| 5 |
3 4
|
syl |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) → Fun 𝐹 ) |
| 6 |
5
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → Fun 𝐹 ) |
| 7 |
|
iccconn |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Conn ) |
| 8 |
7
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Conn ) |
| 9 |
8
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Conn ) |
| 10 |
|
simpr1 |
⊢ ( ( 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) |
| 11 |
10 2
|
syl |
⊢ ( ( 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) → 𝐹 : 𝐷 ⟶ ℂ ) |
| 12 |
11
|
anim2i |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ ( 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐹 : 𝐷 ⟶ ℂ ) ) |
| 13 |
12
|
3impb |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) → ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐹 : 𝐷 ⟶ ℂ ) ) |
| 14 |
13
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐹 : 𝐷 ⟶ ℂ ) ) |
| 15 |
4
|
adantl |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐹 : 𝐷 ⟶ ℂ ) → Fun 𝐹 ) |
| 16 |
|
fdm |
⊢ ( 𝐹 : 𝐷 ⟶ ℂ → dom 𝐹 = 𝐷 ) |
| 17 |
16
|
sseq2d |
⊢ ( 𝐹 : 𝐷 ⟶ ℂ → ( ( 𝐴 [,] 𝐵 ) ⊆ dom 𝐹 ↔ ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) ) |
| 18 |
17
|
biimparc |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐹 : 𝐷 ⟶ ℂ ) → ( 𝐴 [,] 𝐵 ) ⊆ dom 𝐹 ) |
| 19 |
15 18
|
jca |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐹 : 𝐷 ⟶ ℂ ) → ( Fun 𝐹 ∧ ( 𝐴 [,] 𝐵 ) ⊆ dom 𝐹 ) ) |
| 20 |
14 19
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( Fun 𝐹 ∧ ( 𝐴 [,] 𝐵 ) ⊆ dom 𝐹 ) ) |
| 21 |
|
fores |
⊢ ( ( Fun 𝐹 ∧ ( 𝐴 [,] 𝐵 ) ⊆ dom 𝐹 ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) –onto→ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) |
| 22 |
20 21
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) –onto→ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) |
| 23 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 24 |
|
simp332 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ) |
| 25 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
| 26 |
25
|
restuni |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ) → ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) = ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 27 |
23 24 26
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) = ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 28 |
|
foeq3 |
⊢ ( ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) = ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) –onto→ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) –onto→ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 29 |
27 28
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) –onto→ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) –onto→ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 30 |
22 29
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) –onto→ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 31 |
|
simp331 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) |
| 32 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 33 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 34 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) |
| 35 |
33
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 36 |
33
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 37 |
36
|
toponunii |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
| 38 |
37
|
restid |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) ) |
| 39 |
35 38
|
ax-mp |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) |
| 40 |
39
|
eqcomi |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 41 |
33 34 40
|
cncfcn |
⊢ ( ( 𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐷 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 42 |
32 41
|
mpan2 |
⊢ ( 𝐷 ⊆ ℂ → ( 𝐷 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 43 |
42
|
3ad2ant2 |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) → ( 𝐷 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 44 |
43
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝐷 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 45 |
31 44
|
eleqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 46 |
|
simp31 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) |
| 47 |
|
simp32 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → 𝐷 ⊆ ℂ ) |
| 48 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝐷 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) ∈ ( TopOn ‘ 𝐷 ) ) |
| 49 |
36 47 48
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) ∈ ( TopOn ‘ 𝐷 ) ) |
| 50 |
|
toponuni |
⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) ∈ ( TopOn ‘ 𝐷 ) → 𝐷 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) ) |
| 51 |
49 50
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → 𝐷 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) ) |
| 52 |
46 51
|
sseqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) ) |
| 53 |
|
eqid |
⊢ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) |
| 54 |
53
|
cnrest |
⊢ ( ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) Cn ( TopOpen ‘ ℂfld ) ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 55 |
45 52 54
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 56 |
35
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( TopOpen ‘ ℂfld ) ∈ Top ) |
| 57 |
|
cnex |
⊢ ℂ ∈ V |
| 58 |
|
ssexg |
⊢ ( ( 𝐷 ⊆ ℂ ∧ ℂ ∈ V ) → 𝐷 ∈ V ) |
| 59 |
47 57 58
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → 𝐷 ∈ V ) |
| 60 |
|
restabs |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 61 |
56 46 59 60
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 62 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 63 |
62
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 64 |
63
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 65 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
| 66 |
33 65
|
rerest |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 67 |
64 66
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 68 |
61 67
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 69 |
68
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐷 ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) = ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 70 |
55 69
|
eleqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 71 |
36
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 72 |
|
df-ima |
⊢ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) = ran ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) |
| 73 |
72
|
eqimss2i |
⊢ ran ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) |
| 74 |
73
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ran ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) |
| 75 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 76 |
24 75
|
sstrdi |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℂ ) |
| 77 |
|
cnrest2 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℂ ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) ) ) |
| 78 |
71 74 76 77
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) ) ) |
| 79 |
70 78
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 80 |
33 65
|
rerest |
⊢ ( ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 81 |
24 80
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 82 |
81
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) = ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( ( topGen ‘ ran (,) ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 83 |
79 82
|
eleqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( ( topGen ‘ ran (,) ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 84 |
|
eqid |
⊢ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) = ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) |
| 85 |
84
|
cnconn |
⊢ ( ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Conn ∧ ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) –onto→ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( ( topGen ‘ ran (,) ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) ) → ( ( topGen ‘ ran (,) ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ∈ Conn ) |
| 86 |
9 30 83 85
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( topGen ‘ ran (,) ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ∈ Conn ) |
| 87 |
|
reconn |
⊢ ( ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ → ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ∈ Conn ↔ ∀ 𝑥 ∈ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑦 ∈ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 88 |
87
|
3ad2ant2 |
⊢ ( ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) → ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ∈ Conn ↔ ∀ 𝑥 ∈ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑦 ∈ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 89 |
88
|
3ad2ant3 |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) → ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ∈ Conn ↔ ∀ 𝑥 ∈ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑦 ∈ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 90 |
89
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ∈ Conn ↔ ∀ 𝑥 ∈ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑦 ∈ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 91 |
86 90
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ∀ 𝑥 ∈ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑦 ∈ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) |
| 92 |
|
simp11 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → 𝐴 ∈ ℝ ) |
| 93 |
92
|
rexrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → 𝐴 ∈ ℝ* ) |
| 94 |
|
simp12 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → 𝐵 ∈ ℝ ) |
| 95 |
94
|
rexrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → 𝐵 ∈ ℝ* ) |
| 96 |
|
ltle |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → 𝐴 ≤ 𝐵 ) ) |
| 97 |
96
|
imp |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 98 |
97
|
3adantl3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 99 |
98
|
3adant3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → 𝐴 ≤ 𝐵 ) |
| 100 |
|
lbicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 101 |
93 95 99 100
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 102 |
|
funfvima2 |
⊢ ( ( Fun 𝐹 ∧ ( 𝐴 [,] 𝐵 ) ⊆ dom 𝐹 ) → ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 103 |
20 101 102
|
sylc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) |
| 104 |
|
ubicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 105 |
93 95 99 104
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 106 |
|
funfvima2 |
⊢ ( ( Fun 𝐹 ∧ ( 𝐴 [,] 𝐵 ) ⊆ dom 𝐹 ) → ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 107 |
20 105 106
|
sylc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) |
| 108 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝐴 ) → ( 𝑥 [,] 𝑦 ) = ( ( 𝐹 ‘ 𝐴 ) [,] 𝑦 ) ) |
| 109 |
108
|
sseq1d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝐴 ) → ( ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ↔ ( ( 𝐹 ‘ 𝐴 ) [,] 𝑦 ) ⊆ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 110 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝐵 ) → ( ( 𝐹 ‘ 𝐴 ) [,] 𝑦 ) = ( ( 𝐹 ‘ 𝐴 ) [,] ( 𝐹 ‘ 𝐵 ) ) ) |
| 111 |
110
|
sseq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝐵 ) → ( ( ( 𝐹 ‘ 𝐴 ) [,] 𝑦 ) ⊆ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ↔ ( ( 𝐹 ‘ 𝐴 ) [,] ( 𝐹 ‘ 𝐵 ) ) ⊆ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 112 |
109 111
|
rspc2v |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) → ( ∀ 𝑥 ∈ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑦 ∈ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ‘ 𝐴 ) [,] ( 𝐹 ‘ 𝐵 ) ) ⊆ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 113 |
103 107 112
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ∀ 𝑥 ∈ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑦 ∈ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ‘ 𝐴 ) [,] ( 𝐹 ‘ 𝐵 ) ) ⊆ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 114 |
91 113
|
mpd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( 𝐹 ‘ 𝐴 ) [,] ( 𝐹 ‘ 𝐵 ) ) ⊆ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) |
| 115 |
|
ioossicc |
⊢ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ⊆ ( ( 𝐹 ‘ 𝐴 ) [,] ( 𝐹 ‘ 𝐵 ) ) |
| 116 |
115
|
sseli |
⊢ ( 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) → 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) [,] ( 𝐹 ‘ 𝐵 ) ) ) |
| 117 |
116
|
3ad2ant3 |
⊢ ( ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) → 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) [,] ( 𝐹 ‘ 𝐵 ) ) ) |
| 118 |
117
|
3ad2ant3 |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) → 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) [,] ( 𝐹 ‘ 𝐵 ) ) ) |
| 119 |
118
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) [,] ( 𝐹 ‘ 𝐵 ) ) ) |
| 120 |
114 119
|
sseldd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → 𝑈 ∈ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) |
| 121 |
|
fvelima |
⊢ ( ( Fun 𝐹 ∧ 𝑈 ∈ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) → ∃ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) = 𝑈 ) |
| 122 |
6 120 121
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ∃ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) = 𝑈 ) |
| 123 |
|
simpl1 |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 = 𝐴 ∨ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ∨ 𝑥 = 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) → 𝑥 ∈ ℝ* ) |
| 124 |
123
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 = 𝐴 ∨ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ∨ 𝑥 = 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) → 𝑥 ∈ ℝ* ) ) |
| 125 |
|
simprr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) ∧ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 = 𝐴 ∨ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ∨ 𝑥 = 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑈 ) |
| 126 |
24 103
|
sseldd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
| 127 |
|
simp333 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) |
| 128 |
126
|
rexrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) |
| 129 |
24 107
|
sseldd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
| 130 |
129
|
rexrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝐹 ‘ 𝐵 ) ∈ ℝ* ) |
| 131 |
|
elioo2 |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ∧ ( 𝐹 ‘ 𝐵 ) ∈ ℝ* ) → ( 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ↔ ( 𝑈 ∈ ℝ ∧ ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 132 |
128 130 131
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ↔ ( 𝑈 ∈ ℝ ∧ ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 133 |
127 132
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝑈 ∈ ℝ ∧ ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) |
| 134 |
133
|
simp2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝐹 ‘ 𝐴 ) < 𝑈 ) |
| 135 |
126 134
|
gtned |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → 𝑈 ≠ ( 𝐹 ‘ 𝐴 ) ) |
| 136 |
135
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) ∧ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 = 𝐴 ∨ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ∨ 𝑥 = 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) ) → 𝑈 ≠ ( 𝐹 ‘ 𝐴 ) ) |
| 137 |
125 136
|
eqnetrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) ∧ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 = 𝐴 ∨ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ∨ 𝑥 = 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) ) → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝐴 ) ) |
| 138 |
137
|
neneqd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) ∧ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 = 𝐴 ∨ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ∨ 𝑥 = 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) ) → ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 139 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 140 |
138 139
|
nsyl |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) ∧ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 = 𝐴 ∨ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ∨ 𝑥 = 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) ) → ¬ 𝑥 = 𝐴 ) |
| 141 |
|
simp13 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → 𝑈 ∈ ℝ ) |
| 142 |
133
|
simp3d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → 𝑈 < ( 𝐹 ‘ 𝐵 ) ) |
| 143 |
141 142
|
ltned |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → 𝑈 ≠ ( 𝐹 ‘ 𝐵 ) ) |
| 144 |
143
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) ∧ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 = 𝐴 ∨ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ∨ 𝑥 = 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) ) → 𝑈 ≠ ( 𝐹 ‘ 𝐵 ) ) |
| 145 |
125 144
|
eqnetrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) ∧ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 = 𝐴 ∨ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ∨ 𝑥 = 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) ) → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝐵 ) ) |
| 146 |
145
|
neneqd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) ∧ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 = 𝐴 ∨ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ∨ 𝑥 = 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) ) → ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 147 |
|
fveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 148 |
146 147
|
nsyl |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) ∧ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 = 𝐴 ∨ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ∨ 𝑥 = 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) ) → ¬ 𝑥 = 𝐵 ) |
| 149 |
|
simprl3 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) ∧ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 = 𝐴 ∨ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ∨ 𝑥 = 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) ) → ( 𝑥 = 𝐴 ∨ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ∨ 𝑥 = 𝐵 ) ) |
| 150 |
140 148 149
|
ecase13d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) ∧ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 = 𝐴 ∨ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ∨ 𝑥 = 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) ) → ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
| 151 |
150
|
ex |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 = 𝐴 ∨ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ∨ 𝑥 = 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) → ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 152 |
124 151
|
jcad |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 = 𝐴 ∨ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ∨ 𝑥 = 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) → ( 𝑥 ∈ ℝ* ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) ) |
| 153 |
|
3anass |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ↔ ( 𝑥 ∈ ℝ* ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 154 |
152 153
|
imbitrrdi |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 = 𝐴 ∨ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ∨ 𝑥 = 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) → ( 𝑥 ∈ ℝ* ∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 155 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
| 156 |
|
rexr |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) |
| 157 |
|
elicc3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 = 𝐴 ∨ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ∨ 𝑥 = 𝐵 ) ) ) ) |
| 158 |
155 156 157
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 = 𝐴 ∨ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ∨ 𝑥 = 𝐵 ) ) ) ) |
| 159 |
158
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 = 𝐴 ∨ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ∨ 𝑥 = 𝐵 ) ) ) ) |
| 160 |
159
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 = 𝐴 ∨ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ∨ 𝑥 = 𝐵 ) ) ) ) |
| 161 |
160
|
anbi1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) ↔ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ ( 𝑥 = 𝐴 ∨ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ∨ 𝑥 = 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) ) ) |
| 162 |
|
elioo1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 163 |
155 156 162
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 164 |
163
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 165 |
164
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 166 |
154 161 165
|
3imtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ) |
| 167 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) → ( 𝐹 ‘ 𝑥 ) = 𝑈 ) |
| 168 |
167
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) → ( 𝐹 ‘ 𝑥 ) = 𝑈 ) ) |
| 169 |
166 168
|
jcad |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) ) ) |
| 170 |
169
|
reximdv2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ( ∃ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) = 𝑈 → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑥 ) = 𝑈 ) ) |
| 171 |
122 170
|
mpd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ∧ 𝐴 < 𝐵 ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ∧ 𝑈 ∈ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑥 ) = 𝑈 ) |