| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp31 | ⊢ ( ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) )  →  𝐹  ∈  ( 𝐷 –cn→ ℂ ) ) | 
						
							| 2 |  | cncff | ⊢ ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  →  𝐹 : 𝐷 ⟶ ℂ ) | 
						
							| 3 | 1 2 | syl | ⊢ ( ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) )  →  𝐹 : 𝐷 ⟶ ℂ ) | 
						
							| 4 |  | ffun | ⊢ ( 𝐹 : 𝐷 ⟶ ℂ  →  Fun  𝐹 ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) )  →  Fun  𝐹 ) | 
						
							| 6 | 5 | 3ad2ant3 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  Fun  𝐹 ) | 
						
							| 7 |  | iccconn | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,] 𝐵 ) )  ∈  Conn ) | 
						
							| 8 | 7 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  →  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,] 𝐵 ) )  ∈  Conn ) | 
						
							| 9 | 8 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,] 𝐵 ) )  ∈  Conn ) | 
						
							| 10 |  | simpr1 | ⊢ ( ( 𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) )  →  𝐹  ∈  ( 𝐷 –cn→ ℂ ) ) | 
						
							| 11 | 10 2 | syl | ⊢ ( ( 𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) )  →  𝐹 : 𝐷 ⟶ ℂ ) | 
						
							| 12 | 11 | anim2i | ⊢ ( ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  ( 𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐹 : 𝐷 ⟶ ℂ ) ) | 
						
							| 13 | 12 | 3impb | ⊢ ( ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) )  →  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐹 : 𝐷 ⟶ ℂ ) ) | 
						
							| 14 | 13 | 3ad2ant3 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐹 : 𝐷 ⟶ ℂ ) ) | 
						
							| 15 | 4 | adantl | ⊢ ( ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐹 : 𝐷 ⟶ ℂ )  →  Fun  𝐹 ) | 
						
							| 16 |  | fdm | ⊢ ( 𝐹 : 𝐷 ⟶ ℂ  →  dom  𝐹  =  𝐷 ) | 
						
							| 17 | 16 | sseq2d | ⊢ ( 𝐹 : 𝐷 ⟶ ℂ  →  ( ( 𝐴 [,] 𝐵 )  ⊆  dom  𝐹  ↔  ( 𝐴 [,] 𝐵 )  ⊆  𝐷 ) ) | 
						
							| 18 | 17 | biimparc | ⊢ ( ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐹 : 𝐷 ⟶ ℂ )  →  ( 𝐴 [,] 𝐵 )  ⊆  dom  𝐹 ) | 
						
							| 19 | 15 18 | jca | ⊢ ( ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐹 : 𝐷 ⟶ ℂ )  →  ( Fun  𝐹  ∧  ( 𝐴 [,] 𝐵 )  ⊆  dom  𝐹 ) ) | 
						
							| 20 | 14 19 | syl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( Fun  𝐹  ∧  ( 𝐴 [,] 𝐵 )  ⊆  dom  𝐹 ) ) | 
						
							| 21 |  | fores | ⊢ ( ( Fun  𝐹  ∧  ( 𝐴 [,] 𝐵 )  ⊆  dom  𝐹 )  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) –onto→ ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) –onto→ ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 23 |  | retop | ⊢ ( topGen ‘ ran  (,) )  ∈  Top | 
						
							| 24 |  | simp332 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ ) | 
						
							| 25 |  | uniretop | ⊢ ℝ  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 26 | 25 | restuni | ⊢ ( ( ( topGen ‘ ran  (,) )  ∈  Top  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ )  →  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  =  ∪  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 27 | 23 24 26 | sylancr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  =  ∪  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 28 |  | foeq3 | ⊢ ( ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  =  ∪  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) –onto→ ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ↔  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) –onto→ ∪  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) –onto→ ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ↔  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) –onto→ ∪  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) ) | 
						
							| 30 | 22 29 | mpbid | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) –onto→ ∪  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 31 |  | simp331 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  𝐹  ∈  ( 𝐷 –cn→ ℂ ) ) | 
						
							| 32 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 33 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 34 |  | eqid | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  𝐷 )  =  ( ( TopOpen ‘ ℂfld )  ↾t  𝐷 ) | 
						
							| 35 | 33 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld )  ∈  Top | 
						
							| 36 | 33 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) | 
						
							| 37 | 36 | toponunii | ⊢ ℂ  =  ∪  ( TopOpen ‘ ℂfld ) | 
						
							| 38 | 37 | restid | ⊢ ( ( TopOpen ‘ ℂfld )  ∈  Top  →  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ )  =  ( TopOpen ‘ ℂfld ) ) | 
						
							| 39 | 35 38 | ax-mp | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ℂ )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 40 | 39 | eqcomi | ⊢ ( TopOpen ‘ ℂfld )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ ) | 
						
							| 41 | 33 34 40 | cncfcn | ⊢ ( ( 𝐷  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( 𝐷 –cn→ ℂ )  =  ( ( ( TopOpen ‘ ℂfld )  ↾t  𝐷 )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 42 | 32 41 | mpan2 | ⊢ ( 𝐷  ⊆  ℂ  →  ( 𝐷 –cn→ ℂ )  =  ( ( ( TopOpen ‘ ℂfld )  ↾t  𝐷 )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 43 | 42 | 3ad2ant2 | ⊢ ( ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) )  →  ( 𝐷 –cn→ ℂ )  =  ( ( ( TopOpen ‘ ℂfld )  ↾t  𝐷 )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 44 | 43 | 3ad2ant3 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝐷 –cn→ ℂ )  =  ( ( ( TopOpen ‘ ℂfld )  ↾t  𝐷 )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 45 | 31 44 | eleqtrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  𝐹  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  𝐷 )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 46 |  | simp31 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝐴 [,] 𝐵 )  ⊆  𝐷 ) | 
						
							| 47 |  | simp32 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  𝐷  ⊆  ℂ ) | 
						
							| 48 |  | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ )  ∧  𝐷  ⊆  ℂ )  →  ( ( TopOpen ‘ ℂfld )  ↾t  𝐷 )  ∈  ( TopOn ‘ 𝐷 ) ) | 
						
							| 49 | 36 47 48 | sylancr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ( TopOpen ‘ ℂfld )  ↾t  𝐷 )  ∈  ( TopOn ‘ 𝐷 ) ) | 
						
							| 50 |  | toponuni | ⊢ ( ( ( TopOpen ‘ ℂfld )  ↾t  𝐷 )  ∈  ( TopOn ‘ 𝐷 )  →  𝐷  =  ∪  ( ( TopOpen ‘ ℂfld )  ↾t  𝐷 ) ) | 
						
							| 51 | 49 50 | syl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  𝐷  =  ∪  ( ( TopOpen ‘ ℂfld )  ↾t  𝐷 ) ) | 
						
							| 52 | 46 51 | sseqtrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝐴 [,] 𝐵 )  ⊆  ∪  ( ( TopOpen ‘ ℂfld )  ↾t  𝐷 ) ) | 
						
							| 53 |  | eqid | ⊢ ∪  ( ( TopOpen ‘ ℂfld )  ↾t  𝐷 )  =  ∪  ( ( TopOpen ‘ ℂfld )  ↾t  𝐷 ) | 
						
							| 54 | 53 | cnrest | ⊢ ( ( 𝐹  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  𝐷 )  Cn  ( TopOpen ‘ ℂfld ) )  ∧  ( 𝐴 [,] 𝐵 )  ⊆  ∪  ( ( TopOpen ‘ ℂfld )  ↾t  𝐷 ) )  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  𝐷 )  ↾t  ( 𝐴 [,] 𝐵 ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 55 | 45 52 54 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  𝐷 )  ↾t  ( 𝐴 [,] 𝐵 ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 56 | 35 | a1i | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( TopOpen ‘ ℂfld )  ∈  Top ) | 
						
							| 57 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 58 |  | ssexg | ⊢ ( ( 𝐷  ⊆  ℂ  ∧  ℂ  ∈  V )  →  𝐷  ∈  V ) | 
						
							| 59 | 47 57 58 | sylancl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  𝐷  ∈  V ) | 
						
							| 60 |  | restabs | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  Top  ∧  ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ∈  V )  →  ( ( ( TopOpen ‘ ℂfld )  ↾t  𝐷 )  ↾t  ( 𝐴 [,] 𝐵 ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 61 | 56 46 59 60 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ( ( TopOpen ‘ ℂfld )  ↾t  𝐷 )  ↾t  ( 𝐴 [,] 𝐵 ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 62 |  | iccssre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 63 | 62 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 64 | 63 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 65 |  | eqid | ⊢ ( topGen ‘ ran  (,) )  =  ( topGen ‘ ran  (,) ) | 
						
							| 66 | 33 65 | rerest | ⊢ ( ( 𝐴 [,] 𝐵 )  ⊆  ℝ  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 [,] 𝐵 ) )  =  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 67 | 64 66 | syl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐴 [,] 𝐵 ) )  =  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 68 | 61 67 | eqtrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ( ( TopOpen ‘ ℂfld )  ↾t  𝐷 )  ↾t  ( 𝐴 [,] 𝐵 ) )  =  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 69 | 68 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ( ( ( TopOpen ‘ ℂfld )  ↾t  𝐷 )  ↾t  ( 𝐴 [,] 𝐵 ) )  Cn  ( TopOpen ‘ ℂfld ) )  =  ( ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,] 𝐵 ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 70 | 55 69 | eleqtrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,] 𝐵 ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 71 | 36 | a1i | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) ) | 
						
							| 72 |  | df-ima | ⊢ ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  =  ran  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 73 | 72 | eqimss2i | ⊢ ran  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ⊆  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 74 | 73 | a1i | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ran  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ⊆  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 75 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 76 | 24 75 | sstrdi | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℂ ) | 
						
							| 77 |  | cnrest2 | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ )  ∧  ran  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ⊆  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℂ )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,] 𝐵 ) )  Cn  ( TopOpen ‘ ℂfld ) )  ↔  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,] 𝐵 ) )  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) ) ) | 
						
							| 78 | 71 74 76 77 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,] 𝐵 ) )  Cn  ( TopOpen ‘ ℂfld ) )  ↔  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,] 𝐵 ) )  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) ) ) | 
						
							| 79 | 70 78 | mpbid | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,] 𝐵 ) )  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) ) | 
						
							| 80 | 33 65 | rerest | ⊢ ( ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) )  =  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 81 | 24 80 | syl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) )  =  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 82 | 81 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,] 𝐵 ) )  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) )  =  ( ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,] 𝐵 ) )  Cn  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) ) | 
						
							| 83 | 79 82 | eleqtrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,] 𝐵 ) )  Cn  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) ) | 
						
							| 84 |  | eqid | ⊢ ∪  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) )  =  ∪  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 85 | 84 | cnconn | ⊢ ( ( ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,] 𝐵 ) )  ∈  Conn  ∧  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) –onto→ ∪  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,] 𝐵 ) )  Cn  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) )  →  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) )  ∈  Conn ) | 
						
							| 86 | 9 30 83 85 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) )  ∈  Conn ) | 
						
							| 87 |  | reconn | ⊢ ( ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  →  ( ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) )  ∈  Conn  ↔  ∀ 𝑥  ∈  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ∀ 𝑦  ∈  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ( 𝑥 [,] 𝑦 )  ⊆  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 88 | 87 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) )  →  ( ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) )  ∈  Conn  ↔  ∀ 𝑥  ∈  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ∀ 𝑦  ∈  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ( 𝑥 [,] 𝑦 )  ⊆  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 89 | 88 | 3ad2ant3 | ⊢ ( ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) )  →  ( ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) )  ∈  Conn  ↔  ∀ 𝑥  ∈  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ∀ 𝑦  ∈  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ( 𝑥 [,] 𝑦 )  ⊆  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 90 | 89 | 3ad2ant3 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) )  ∈  Conn  ↔  ∀ 𝑥  ∈  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ∀ 𝑦  ∈  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ( 𝑥 [,] 𝑦 )  ⊆  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 91 | 86 90 | mpbid | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ∀ 𝑥  ∈  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ∀ 𝑦  ∈  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ( 𝑥 [,] 𝑦 )  ⊆  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 92 |  | simp11 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 93 | 92 | rexrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 94 |  | simp12 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  𝐵  ∈  ℝ ) | 
						
							| 95 | 94 | rexrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 96 |  | ltle | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  𝐵  →  𝐴  ≤  𝐵 ) ) | 
						
							| 97 | 96 | imp | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  <  𝐵 )  →  𝐴  ≤  𝐵 ) | 
						
							| 98 | 97 | 3adantl3 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵 )  →  𝐴  ≤  𝐵 ) | 
						
							| 99 | 98 | 3adant3 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  𝐴  ≤  𝐵 ) | 
						
							| 100 |  | lbicc2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  ≤  𝐵 )  →  𝐴  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 101 | 93 95 99 100 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  𝐴  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 102 |  | funfvima2 | ⊢ ( ( Fun  𝐹  ∧  ( 𝐴 [,] 𝐵 )  ⊆  dom  𝐹 )  →  ( 𝐴  ∈  ( 𝐴 [,] 𝐵 )  →  ( 𝐹 ‘ 𝐴 )  ∈  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 103 | 20 101 102 | sylc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝐹 ‘ 𝐴 )  ∈  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 104 |  | ubicc2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  ≤  𝐵 )  →  𝐵  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 105 | 93 95 99 104 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  𝐵  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 106 |  | funfvima2 | ⊢ ( ( Fun  𝐹  ∧  ( 𝐴 [,] 𝐵 )  ⊆  dom  𝐹 )  →  ( 𝐵  ∈  ( 𝐴 [,] 𝐵 )  →  ( 𝐹 ‘ 𝐵 )  ∈  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 107 | 20 105 106 | sylc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝐹 ‘ 𝐵 )  ∈  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 108 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝐴 )  →  ( 𝑥 [,] 𝑦 )  =  ( ( 𝐹 ‘ 𝐴 ) [,] 𝑦 ) ) | 
						
							| 109 | 108 | sseq1d | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝐴 )  →  ( ( 𝑥 [,] 𝑦 )  ⊆  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ↔  ( ( 𝐹 ‘ 𝐴 ) [,] 𝑦 )  ⊆  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 110 |  | oveq2 | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝐵 )  →  ( ( 𝐹 ‘ 𝐴 ) [,] 𝑦 )  =  ( ( 𝐹 ‘ 𝐴 ) [,] ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 111 | 110 | sseq1d | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝐵 )  →  ( ( ( 𝐹 ‘ 𝐴 ) [,] 𝑦 )  ⊆  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ↔  ( ( 𝐹 ‘ 𝐴 ) [,] ( 𝐹 ‘ 𝐵 ) )  ⊆  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 112 | 109 111 | rspc2v | ⊢ ( ( ( 𝐹 ‘ 𝐴 )  ∈  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ∧  ( 𝐹 ‘ 𝐵 )  ∈  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) )  →  ( ∀ 𝑥  ∈  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ∀ 𝑦  ∈  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ( 𝑥 [,] 𝑦 )  ⊆  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  →  ( ( 𝐹 ‘ 𝐴 ) [,] ( 𝐹 ‘ 𝐵 ) )  ⊆  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 113 | 103 107 112 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ∀ 𝑥  ∈  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ∀ 𝑦  ∈  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ( 𝑥 [,] 𝑦 )  ⊆  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  →  ( ( 𝐹 ‘ 𝐴 ) [,] ( 𝐹 ‘ 𝐵 ) )  ⊆  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 114 | 91 113 | mpd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ( 𝐹 ‘ 𝐴 ) [,] ( 𝐹 ‘ 𝐵 ) )  ⊆  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 115 |  | ioossicc | ⊢ ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) )  ⊆  ( ( 𝐹 ‘ 𝐴 ) [,] ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 116 | 115 | sseli | ⊢ ( 𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) )  →  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) [,] ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 117 | 116 | 3ad2ant3 | ⊢ ( ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) )  →  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) [,] ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 118 | 117 | 3ad2ant3 | ⊢ ( ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) )  →  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) [,] ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 119 | 118 | 3ad2ant3 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) [,] ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 120 | 114 119 | sseldd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  𝑈  ∈  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 121 |  | fvelima | ⊢ ( ( Fun  𝐹  ∧  𝑈  ∈  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) ) )  →  ∃ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  =  𝑈 ) | 
						
							| 122 | 6 120 121 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ∃ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  =  𝑈 ) | 
						
							| 123 |  | simpl1 | ⊢ ( ( ( 𝑥  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  =  𝐴  ∨  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 )  ∨  𝑥  =  𝐵 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑈 )  →  𝑥  ∈  ℝ* ) | 
						
							| 124 | 123 | a1i | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ( ( 𝑥  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  =  𝐴  ∨  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 )  ∨  𝑥  =  𝐵 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑈 )  →  𝑥  ∈  ℝ* ) ) | 
						
							| 125 |  | simprr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  ∧  ( ( 𝑥  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  =  𝐴  ∨  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 )  ∨  𝑥  =  𝐵 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑈 ) )  →  ( 𝐹 ‘ 𝑥 )  =  𝑈 ) | 
						
							| 126 | 24 103 | sseldd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝐹 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 127 |  | simp333 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 128 | 126 | rexrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝐹 ‘ 𝐴 )  ∈  ℝ* ) | 
						
							| 129 | 24 107 | sseldd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝐹 ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 130 | 129 | rexrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝐹 ‘ 𝐵 )  ∈  ℝ* ) | 
						
							| 131 |  | elioo2 | ⊢ ( ( ( 𝐹 ‘ 𝐴 )  ∈  ℝ*  ∧  ( 𝐹 ‘ 𝐵 )  ∈  ℝ* )  →  ( 𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) )  ↔  ( 𝑈  ∈  ℝ  ∧  ( 𝐹 ‘ 𝐴 )  <  𝑈  ∧  𝑈  <  ( 𝐹 ‘ 𝐵 ) ) ) ) | 
						
							| 132 | 128 130 131 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) )  ↔  ( 𝑈  ∈  ℝ  ∧  ( 𝐹 ‘ 𝐴 )  <  𝑈  ∧  𝑈  <  ( 𝐹 ‘ 𝐵 ) ) ) ) | 
						
							| 133 | 127 132 | mpbid | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝑈  ∈  ℝ  ∧  ( 𝐹 ‘ 𝐴 )  <  𝑈  ∧  𝑈  <  ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 134 | 133 | simp2d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝐹 ‘ 𝐴 )  <  𝑈 ) | 
						
							| 135 | 126 134 | gtned | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  𝑈  ≠  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 136 | 135 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  ∧  ( ( 𝑥  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  =  𝐴  ∨  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 )  ∨  𝑥  =  𝐵 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑈 ) )  →  𝑈  ≠  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 137 | 125 136 | eqnetrd | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  ∧  ( ( 𝑥  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  =  𝐴  ∨  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 )  ∨  𝑥  =  𝐵 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑈 ) )  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 138 | 137 | neneqd | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  ∧  ( ( 𝑥  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  =  𝐴  ∨  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 )  ∨  𝑥  =  𝐵 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑈 ) )  →  ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 139 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 140 | 138 139 | nsyl | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  ∧  ( ( 𝑥  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  =  𝐴  ∨  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 )  ∨  𝑥  =  𝐵 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑈 ) )  →  ¬  𝑥  =  𝐴 ) | 
						
							| 141 |  | simp13 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  𝑈  ∈  ℝ ) | 
						
							| 142 | 133 | simp3d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  𝑈  <  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 143 | 141 142 | ltned | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  𝑈  ≠  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 144 | 143 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  ∧  ( ( 𝑥  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  =  𝐴  ∨  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 )  ∨  𝑥  =  𝐵 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑈 ) )  →  𝑈  ≠  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 145 | 125 144 | eqnetrd | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  ∧  ( ( 𝑥  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  =  𝐴  ∨  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 )  ∨  𝑥  =  𝐵 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑈 ) )  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 146 | 145 | neneqd | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  ∧  ( ( 𝑥  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  =  𝐴  ∨  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 )  ∨  𝑥  =  𝐵 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑈 ) )  →  ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 147 |  | fveq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 148 | 146 147 | nsyl | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  ∧  ( ( 𝑥  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  =  𝐴  ∨  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 )  ∨  𝑥  =  𝐵 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑈 ) )  →  ¬  𝑥  =  𝐵 ) | 
						
							| 149 |  | simprl3 | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  ∧  ( ( 𝑥  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  =  𝐴  ∨  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 )  ∨  𝑥  =  𝐵 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑈 ) )  →  ( 𝑥  =  𝐴  ∨  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 )  ∨  𝑥  =  𝐵 ) ) | 
						
							| 150 | 140 148 149 | ecase13d | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  ∧  ( ( 𝑥  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  =  𝐴  ∨  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 )  ∨  𝑥  =  𝐵 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑈 ) )  →  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 ) ) | 
						
							| 151 | 150 | ex | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ( ( 𝑥  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  =  𝐴  ∨  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 )  ∨  𝑥  =  𝐵 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑈 )  →  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 ) ) ) | 
						
							| 152 | 124 151 | jcad | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ( ( 𝑥  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  =  𝐴  ∨  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 )  ∨  𝑥  =  𝐵 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑈 )  →  ( 𝑥  ∈  ℝ*  ∧  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 ) ) ) ) | 
						
							| 153 |  | 3anass | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  𝐴  <  𝑥  ∧  𝑥  <  𝐵 )  ↔  ( 𝑥  ∈  ℝ*  ∧  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 ) ) ) | 
						
							| 154 | 152 153 | imbitrrdi | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ( ( 𝑥  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  =  𝐴  ∨  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 )  ∨  𝑥  =  𝐵 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑈 )  →  ( 𝑥  ∈  ℝ*  ∧  𝐴  <  𝑥  ∧  𝑥  <  𝐵 ) ) ) | 
						
							| 155 |  | rexr | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℝ* ) | 
						
							| 156 |  | rexr | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℝ* ) | 
						
							| 157 |  | elicc3 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  =  𝐴  ∨  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 )  ∨  𝑥  =  𝐵 ) ) ) ) | 
						
							| 158 | 155 156 157 | syl2an | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  =  𝐴  ∨  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 )  ∨  𝑥  =  𝐵 ) ) ) ) | 
						
							| 159 | 158 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  =  𝐴  ∨  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 )  ∨  𝑥  =  𝐵 ) ) ) ) | 
						
							| 160 | 159 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  =  𝐴  ∨  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 )  ∨  𝑥  =  𝐵 ) ) ) ) | 
						
							| 161 | 160 | anbi1d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑈 )  ↔  ( ( 𝑥  ∈  ℝ*  ∧  𝐴  ≤  𝐵  ∧  ( 𝑥  =  𝐴  ∨  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 )  ∨  𝑥  =  𝐵 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑈 ) ) ) | 
						
							| 162 |  | elioo1 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↔  ( 𝑥  ∈  ℝ*  ∧  𝐴  <  𝑥  ∧  𝑥  <  𝐵 ) ) ) | 
						
							| 163 | 155 156 162 | syl2an | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↔  ( 𝑥  ∈  ℝ*  ∧  𝐴  <  𝑥  ∧  𝑥  <  𝐵 ) ) ) | 
						
							| 164 | 163 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  →  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↔  ( 𝑥  ∈  ℝ*  ∧  𝐴  <  𝑥  ∧  𝑥  <  𝐵 ) ) ) | 
						
							| 165 | 164 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↔  ( 𝑥  ∈  ℝ*  ∧  𝐴  <  𝑥  ∧  𝑥  <  𝐵 ) ) ) | 
						
							| 166 | 154 161 165 | 3imtr4d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑈 )  →  𝑥  ∈  ( 𝐴 (,) 𝐵 ) ) ) | 
						
							| 167 |  | simpr | ⊢ ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑈 )  →  ( 𝐹 ‘ 𝑥 )  =  𝑈 ) | 
						
							| 168 | 167 | a1i | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑈 )  →  ( 𝐹 ‘ 𝑥 )  =  𝑈 ) ) | 
						
							| 169 | 166 168 | jcad | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑈 )  →  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑈 ) ) ) | 
						
							| 170 | 169 | reximdv2 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ( ∃ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  =  𝑈  →  ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑥 )  =  𝑈 ) ) | 
						
							| 171 | 122 170 | mpd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑈  ∈  ℝ )  ∧  𝐴  <  𝐵  ∧  ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  ℂ  ∧  ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  ( 𝐹  “  ( 𝐴 [,] 𝐵 ) )  ⊆  ℝ  ∧  𝑈  ∈  ( ( 𝐹 ‘ 𝐴 ) (,) ( 𝐹 ‘ 𝐵 ) ) ) ) )  →  ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑥 )  =  𝑈 ) |