Step |
Hyp |
Ref |
Expression |
1 |
|
jm2.27a1 |
|- ( ph -> A e. ( ZZ>= ` 2 ) ) |
2 |
|
jm2.27a2 |
|- ( ph -> B e. NN ) |
3 |
|
jm2.27a3 |
|- ( ph -> C e. NN ) |
4 |
|
jm2.27c4 |
|- ( ph -> C = ( A rmY B ) ) |
5 |
|
jm2.27c5 |
|- D = ( A rmX B ) |
6 |
|
jm2.27c6 |
|- Q = ( B x. ( A rmY B ) ) |
7 |
|
jm2.27c7 |
|- E = ( A rmY ( 2 x. Q ) ) |
8 |
|
jm2.27c8 |
|- F = ( A rmX ( 2 x. Q ) ) |
9 |
|
jm2.27c9 |
|- G = ( A + ( ( F ^ 2 ) x. ( ( F ^ 2 ) - A ) ) ) |
10 |
|
jm2.27c10 |
|- H = ( G rmY B ) |
11 |
|
jm2.27c11 |
|- I = ( G rmX B ) |
12 |
|
jm2.27c12 |
|- J = ( ( E / ( 2 x. ( C ^ 2 ) ) ) - 1 ) |
13 |
2
|
nnzd |
|- ( ph -> B e. ZZ ) |
14 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
15 |
14
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) -> ( A rmX B ) e. NN0 ) |
16 |
1 13 15
|
syl2anc |
|- ( ph -> ( A rmX B ) e. NN0 ) |
17 |
5 16
|
eqeltrid |
|- ( ph -> D e. NN0 ) |
18 |
|
2z |
|- 2 e. ZZ |
19 |
3
|
nnzd |
|- ( ph -> C e. ZZ ) |
20 |
4 19
|
eqeltrrd |
|- ( ph -> ( A rmY B ) e. ZZ ) |
21 |
13 20
|
zmulcld |
|- ( ph -> ( B x. ( A rmY B ) ) e. ZZ ) |
22 |
6 21
|
eqeltrid |
|- ( ph -> Q e. ZZ ) |
23 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ Q e. ZZ ) -> ( 2 x. Q ) e. ZZ ) |
24 |
18 22 23
|
sylancr |
|- ( ph -> ( 2 x. Q ) e. ZZ ) |
25 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
26 |
25
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( 2 x. Q ) e. ZZ ) -> ( A rmY ( 2 x. Q ) ) e. ZZ ) |
27 |
1 24 26
|
syl2anc |
|- ( ph -> ( A rmY ( 2 x. Q ) ) e. ZZ ) |
28 |
|
rmy0 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY 0 ) = 0 ) |
29 |
1 28
|
syl |
|- ( ph -> ( A rmY 0 ) = 0 ) |
30 |
|
2nn |
|- 2 e. NN |
31 |
4 3
|
eqeltrrd |
|- ( ph -> ( A rmY B ) e. NN ) |
32 |
2 31
|
nnmulcld |
|- ( ph -> ( B x. ( A rmY B ) ) e. NN ) |
33 |
6 32
|
eqeltrid |
|- ( ph -> Q e. NN ) |
34 |
|
nnmulcl |
|- ( ( 2 e. NN /\ Q e. NN ) -> ( 2 x. Q ) e. NN ) |
35 |
30 33 34
|
sylancr |
|- ( ph -> ( 2 x. Q ) e. NN ) |
36 |
35
|
nnnn0d |
|- ( ph -> ( 2 x. Q ) e. NN0 ) |
37 |
36
|
nn0ge0d |
|- ( ph -> 0 <_ ( 2 x. Q ) ) |
38 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
39 |
|
lermy |
|- ( ( A e. ( ZZ>= ` 2 ) /\ 0 e. ZZ /\ ( 2 x. Q ) e. ZZ ) -> ( 0 <_ ( 2 x. Q ) <-> ( A rmY 0 ) <_ ( A rmY ( 2 x. Q ) ) ) ) |
40 |
1 38 24 39
|
syl3anc |
|- ( ph -> ( 0 <_ ( 2 x. Q ) <-> ( A rmY 0 ) <_ ( A rmY ( 2 x. Q ) ) ) ) |
41 |
37 40
|
mpbid |
|- ( ph -> ( A rmY 0 ) <_ ( A rmY ( 2 x. Q ) ) ) |
42 |
29 41
|
eqbrtrrd |
|- ( ph -> 0 <_ ( A rmY ( 2 x. Q ) ) ) |
43 |
|
elnn0z |
|- ( ( A rmY ( 2 x. Q ) ) e. NN0 <-> ( ( A rmY ( 2 x. Q ) ) e. ZZ /\ 0 <_ ( A rmY ( 2 x. Q ) ) ) ) |
44 |
27 42 43
|
sylanbrc |
|- ( ph -> ( A rmY ( 2 x. Q ) ) e. NN0 ) |
45 |
7 44
|
eqeltrid |
|- ( ph -> E e. NN0 ) |
46 |
14
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( 2 x. Q ) e. ZZ ) -> ( A rmX ( 2 x. Q ) ) e. NN0 ) |
47 |
1 24 46
|
syl2anc |
|- ( ph -> ( A rmX ( 2 x. Q ) ) e. NN0 ) |
48 |
8 47
|
eqeltrid |
|- ( ph -> F e. NN0 ) |
49 |
17 45 48
|
3jca |
|- ( ph -> ( D e. NN0 /\ E e. NN0 /\ F e. NN0 ) ) |
50 |
|
2nn0 |
|- 2 e. NN0 |
51 |
48
|
nn0cnd |
|- ( ph -> F e. CC ) |
52 |
51
|
sqvald |
|- ( ph -> ( F ^ 2 ) = ( F x. F ) ) |
53 |
48 48
|
nn0mulcld |
|- ( ph -> ( F x. F ) e. NN0 ) |
54 |
52 53
|
eqeltrd |
|- ( ph -> ( F ^ 2 ) e. NN0 ) |
55 |
|
eluz2nn |
|- ( A e. ( ZZ>= ` 2 ) -> A e. NN ) |
56 |
1 55
|
syl |
|- ( ph -> A e. NN ) |
57 |
56
|
nnnn0d |
|- ( ph -> A e. NN0 ) |
58 |
57
|
nn0red |
|- ( ph -> A e. RR ) |
59 |
48
|
nn0red |
|- ( ph -> F e. RR ) |
60 |
59 59
|
remulcld |
|- ( ph -> ( F x. F ) e. RR ) |
61 |
|
rmx1 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmX 1 ) = A ) |
62 |
1 61
|
syl |
|- ( ph -> ( A rmX 1 ) = A ) |
63 |
35
|
nnge1d |
|- ( ph -> 1 <_ ( 2 x. Q ) ) |
64 |
|
1nn0 |
|- 1 e. NN0 |
65 |
64
|
a1i |
|- ( ph -> 1 e. NN0 ) |
66 |
|
lermxnn0 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ 1 e. NN0 /\ ( 2 x. Q ) e. NN0 ) -> ( 1 <_ ( 2 x. Q ) <-> ( A rmX 1 ) <_ ( A rmX ( 2 x. Q ) ) ) ) |
67 |
1 65 36 66
|
syl3anc |
|- ( ph -> ( 1 <_ ( 2 x. Q ) <-> ( A rmX 1 ) <_ ( A rmX ( 2 x. Q ) ) ) ) |
68 |
63 67
|
mpbid |
|- ( ph -> ( A rmX 1 ) <_ ( A rmX ( 2 x. Q ) ) ) |
69 |
62 68
|
eqbrtrrd |
|- ( ph -> A <_ ( A rmX ( 2 x. Q ) ) ) |
70 |
69 8
|
breqtrrdi |
|- ( ph -> A <_ F ) |
71 |
48
|
nn0ge0d |
|- ( ph -> 0 <_ F ) |
72 |
|
rmxnn |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( 2 x. Q ) e. ZZ ) -> ( A rmX ( 2 x. Q ) ) e. NN ) |
73 |
1 24 72
|
syl2anc |
|- ( ph -> ( A rmX ( 2 x. Q ) ) e. NN ) |
74 |
8 73
|
eqeltrid |
|- ( ph -> F e. NN ) |
75 |
74
|
nnge1d |
|- ( ph -> 1 <_ F ) |
76 |
59 59 71 75
|
lemulge12d |
|- ( ph -> F <_ ( F x. F ) ) |
77 |
58 59 60 70 76
|
letrd |
|- ( ph -> A <_ ( F x. F ) ) |
78 |
77 52
|
breqtrrd |
|- ( ph -> A <_ ( F ^ 2 ) ) |
79 |
|
nn0sub |
|- ( ( A e. NN0 /\ ( F ^ 2 ) e. NN0 ) -> ( A <_ ( F ^ 2 ) <-> ( ( F ^ 2 ) - A ) e. NN0 ) ) |
80 |
57 54 79
|
syl2anc |
|- ( ph -> ( A <_ ( F ^ 2 ) <-> ( ( F ^ 2 ) - A ) e. NN0 ) ) |
81 |
78 80
|
mpbid |
|- ( ph -> ( ( F ^ 2 ) - A ) e. NN0 ) |
82 |
54 81
|
nn0mulcld |
|- ( ph -> ( ( F ^ 2 ) x. ( ( F ^ 2 ) - A ) ) e. NN0 ) |
83 |
|
uzaddcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( ( F ^ 2 ) x. ( ( F ^ 2 ) - A ) ) e. NN0 ) -> ( A + ( ( F ^ 2 ) x. ( ( F ^ 2 ) - A ) ) ) e. ( ZZ>= ` 2 ) ) |
84 |
1 82 83
|
syl2anc |
|- ( ph -> ( A + ( ( F ^ 2 ) x. ( ( F ^ 2 ) - A ) ) ) e. ( ZZ>= ` 2 ) ) |
85 |
9 84
|
eqeltrid |
|- ( ph -> G e. ( ZZ>= ` 2 ) ) |
86 |
|
eluznn0 |
|- ( ( 2 e. NN0 /\ G e. ( ZZ>= ` 2 ) ) -> G e. NN0 ) |
87 |
50 85 86
|
sylancr |
|- ( ph -> G e. NN0 ) |
88 |
25
|
fovcl |
|- ( ( G e. ( ZZ>= ` 2 ) /\ B e. ZZ ) -> ( G rmY B ) e. ZZ ) |
89 |
85 13 88
|
syl2anc |
|- ( ph -> ( G rmY B ) e. ZZ ) |
90 |
|
rmy0 |
|- ( G e. ( ZZ>= ` 2 ) -> ( G rmY 0 ) = 0 ) |
91 |
85 90
|
syl |
|- ( ph -> ( G rmY 0 ) = 0 ) |
92 |
2
|
nnnn0d |
|- ( ph -> B e. NN0 ) |
93 |
92
|
nn0ge0d |
|- ( ph -> 0 <_ B ) |
94 |
|
lermy |
|- ( ( G e. ( ZZ>= ` 2 ) /\ 0 e. ZZ /\ B e. ZZ ) -> ( 0 <_ B <-> ( G rmY 0 ) <_ ( G rmY B ) ) ) |
95 |
85 38 13 94
|
syl3anc |
|- ( ph -> ( 0 <_ B <-> ( G rmY 0 ) <_ ( G rmY B ) ) ) |
96 |
93 95
|
mpbid |
|- ( ph -> ( G rmY 0 ) <_ ( G rmY B ) ) |
97 |
91 96
|
eqbrtrrd |
|- ( ph -> 0 <_ ( G rmY B ) ) |
98 |
|
elnn0z |
|- ( ( G rmY B ) e. NN0 <-> ( ( G rmY B ) e. ZZ /\ 0 <_ ( G rmY B ) ) ) |
99 |
89 97 98
|
sylanbrc |
|- ( ph -> ( G rmY B ) e. NN0 ) |
100 |
10 99
|
eqeltrid |
|- ( ph -> H e. NN0 ) |
101 |
14
|
fovcl |
|- ( ( G e. ( ZZ>= ` 2 ) /\ B e. ZZ ) -> ( G rmX B ) e. NN0 ) |
102 |
85 13 101
|
syl2anc |
|- ( ph -> ( G rmX B ) e. NN0 ) |
103 |
11 102
|
eqeltrid |
|- ( ph -> I e. NN0 ) |
104 |
87 100 103
|
3jca |
|- ( ph -> ( G e. NN0 /\ H e. NN0 /\ I e. NN0 ) ) |
105 |
|
zsqcl |
|- ( ( A rmY B ) e. ZZ -> ( ( A rmY B ) ^ 2 ) e. ZZ ) |
106 |
20 105
|
syl |
|- ( ph -> ( ( A rmY B ) ^ 2 ) e. ZZ ) |
107 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ ( ( A rmY B ) ^ 2 ) e. ZZ ) -> ( 2 x. ( ( A rmY B ) ^ 2 ) ) e. ZZ ) |
108 |
18 106 107
|
sylancr |
|- ( ph -> ( 2 x. ( ( A rmY B ) ^ 2 ) ) e. ZZ ) |
109 |
25
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ Q e. ZZ ) -> ( A rmY Q ) e. ZZ ) |
110 |
1 22 109
|
syl2anc |
|- ( ph -> ( A rmY Q ) e. ZZ ) |
111 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ ( A rmY Q ) e. ZZ ) -> ( 2 x. ( A rmY Q ) ) e. ZZ ) |
112 |
18 110 111
|
sylancr |
|- ( ph -> ( 2 x. ( A rmY Q ) ) e. ZZ ) |
113 |
|
iddvds |
|- ( ( B x. ( A rmY B ) ) e. ZZ -> ( B x. ( A rmY B ) ) || ( B x. ( A rmY B ) ) ) |
114 |
21 113
|
syl |
|- ( ph -> ( B x. ( A rmY B ) ) || ( B x. ( A rmY B ) ) ) |
115 |
114 6
|
breqtrrdi |
|- ( ph -> ( B x. ( A rmY B ) ) || Q ) |
116 |
|
jm2.20nn |
|- ( ( A e. ( ZZ>= ` 2 ) /\ Q e. NN /\ B e. NN ) -> ( ( ( A rmY B ) ^ 2 ) || ( A rmY Q ) <-> ( B x. ( A rmY B ) ) || Q ) ) |
117 |
1 33 2 116
|
syl3anc |
|- ( ph -> ( ( ( A rmY B ) ^ 2 ) || ( A rmY Q ) <-> ( B x. ( A rmY B ) ) || Q ) ) |
118 |
115 117
|
mpbird |
|- ( ph -> ( ( A rmY B ) ^ 2 ) || ( A rmY Q ) ) |
119 |
18
|
a1i |
|- ( ph -> 2 e. ZZ ) |
120 |
|
dvdscmul |
|- ( ( ( ( A rmY B ) ^ 2 ) e. ZZ /\ ( A rmY Q ) e. ZZ /\ 2 e. ZZ ) -> ( ( ( A rmY B ) ^ 2 ) || ( A rmY Q ) -> ( 2 x. ( ( A rmY B ) ^ 2 ) ) || ( 2 x. ( A rmY Q ) ) ) ) |
121 |
106 110 119 120
|
syl3anc |
|- ( ph -> ( ( ( A rmY B ) ^ 2 ) || ( A rmY Q ) -> ( 2 x. ( ( A rmY B ) ^ 2 ) ) || ( 2 x. ( A rmY Q ) ) ) ) |
122 |
118 121
|
mpd |
|- ( ph -> ( 2 x. ( ( A rmY B ) ^ 2 ) ) || ( 2 x. ( A rmY Q ) ) ) |
123 |
14
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ Q e. ZZ ) -> ( A rmX Q ) e. NN0 ) |
124 |
1 22 123
|
syl2anc |
|- ( ph -> ( A rmX Q ) e. NN0 ) |
125 |
124
|
nn0zd |
|- ( ph -> ( A rmX Q ) e. ZZ ) |
126 |
|
dvdsmul1 |
|- ( ( ( 2 x. ( A rmY Q ) ) e. ZZ /\ ( A rmX Q ) e. ZZ ) -> ( 2 x. ( A rmY Q ) ) || ( ( 2 x. ( A rmY Q ) ) x. ( A rmX Q ) ) ) |
127 |
112 125 126
|
syl2anc |
|- ( ph -> ( 2 x. ( A rmY Q ) ) || ( ( 2 x. ( A rmY Q ) ) x. ( A rmX Q ) ) ) |
128 |
|
rmydbl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ Q e. ZZ ) -> ( A rmY ( 2 x. Q ) ) = ( ( 2 x. ( A rmX Q ) ) x. ( A rmY Q ) ) ) |
129 |
1 22 128
|
syl2anc |
|- ( ph -> ( A rmY ( 2 x. Q ) ) = ( ( 2 x. ( A rmX Q ) ) x. ( A rmY Q ) ) ) |
130 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
131 |
124
|
nn0cnd |
|- ( ph -> ( A rmX Q ) e. CC ) |
132 |
110
|
zcnd |
|- ( ph -> ( A rmY Q ) e. CC ) |
133 |
130 131 132
|
mul32d |
|- ( ph -> ( ( 2 x. ( A rmX Q ) ) x. ( A rmY Q ) ) = ( ( 2 x. ( A rmY Q ) ) x. ( A rmX Q ) ) ) |
134 |
129 133
|
eqtrd |
|- ( ph -> ( A rmY ( 2 x. Q ) ) = ( ( 2 x. ( A rmY Q ) ) x. ( A rmX Q ) ) ) |
135 |
127 134
|
breqtrrd |
|- ( ph -> ( 2 x. ( A rmY Q ) ) || ( A rmY ( 2 x. Q ) ) ) |
136 |
108 112 27 122 135
|
dvdstrd |
|- ( ph -> ( 2 x. ( ( A rmY B ) ^ 2 ) ) || ( A rmY ( 2 x. Q ) ) ) |
137 |
4
|
oveq1d |
|- ( ph -> ( C ^ 2 ) = ( ( A rmY B ) ^ 2 ) ) |
138 |
137
|
oveq2d |
|- ( ph -> ( 2 x. ( C ^ 2 ) ) = ( 2 x. ( ( A rmY B ) ^ 2 ) ) ) |
139 |
7
|
a1i |
|- ( ph -> E = ( A rmY ( 2 x. Q ) ) ) |
140 |
136 138 139
|
3brtr4d |
|- ( ph -> ( 2 x. ( C ^ 2 ) ) || E ) |
141 |
7 27
|
eqeltrid |
|- ( ph -> E e. ZZ ) |
142 |
35
|
nngt0d |
|- ( ph -> 0 < ( 2 x. Q ) ) |
143 |
|
ltrmy |
|- ( ( A e. ( ZZ>= ` 2 ) /\ 0 e. ZZ /\ ( 2 x. Q ) e. ZZ ) -> ( 0 < ( 2 x. Q ) <-> ( A rmY 0 ) < ( A rmY ( 2 x. Q ) ) ) ) |
144 |
1 38 24 143
|
syl3anc |
|- ( ph -> ( 0 < ( 2 x. Q ) <-> ( A rmY 0 ) < ( A rmY ( 2 x. Q ) ) ) ) |
145 |
142 144
|
mpbid |
|- ( ph -> ( A rmY 0 ) < ( A rmY ( 2 x. Q ) ) ) |
146 |
29
|
eqcomd |
|- ( ph -> 0 = ( A rmY 0 ) ) |
147 |
145 146 139
|
3brtr4d |
|- ( ph -> 0 < E ) |
148 |
|
elnnz |
|- ( E e. NN <-> ( E e. ZZ /\ 0 < E ) ) |
149 |
141 147 148
|
sylanbrc |
|- ( ph -> E e. NN ) |
150 |
3
|
nnsqcld |
|- ( ph -> ( C ^ 2 ) e. NN ) |
151 |
|
nnmulcl |
|- ( ( 2 e. NN /\ ( C ^ 2 ) e. NN ) -> ( 2 x. ( C ^ 2 ) ) e. NN ) |
152 |
30 150 151
|
sylancr |
|- ( ph -> ( 2 x. ( C ^ 2 ) ) e. NN ) |
153 |
|
nndivdvds |
|- ( ( E e. NN /\ ( 2 x. ( C ^ 2 ) ) e. NN ) -> ( ( 2 x. ( C ^ 2 ) ) || E <-> ( E / ( 2 x. ( C ^ 2 ) ) ) e. NN ) ) |
154 |
149 152 153
|
syl2anc |
|- ( ph -> ( ( 2 x. ( C ^ 2 ) ) || E <-> ( E / ( 2 x. ( C ^ 2 ) ) ) e. NN ) ) |
155 |
140 154
|
mpbid |
|- ( ph -> ( E / ( 2 x. ( C ^ 2 ) ) ) e. NN ) |
156 |
|
nnm1nn0 |
|- ( ( E / ( 2 x. ( C ^ 2 ) ) ) e. NN -> ( ( E / ( 2 x. ( C ^ 2 ) ) ) - 1 ) e. NN0 ) |
157 |
155 156
|
syl |
|- ( ph -> ( ( E / ( 2 x. ( C ^ 2 ) ) ) - 1 ) e. NN0 ) |
158 |
12 157
|
eqeltrid |
|- ( ph -> J e. NN0 ) |
159 |
5
|
oveq1i |
|- ( D ^ 2 ) = ( ( A rmX B ) ^ 2 ) |
160 |
159
|
a1i |
|- ( ph -> ( D ^ 2 ) = ( ( A rmX B ) ^ 2 ) ) |
161 |
137
|
oveq2d |
|- ( ph -> ( ( ( A ^ 2 ) - 1 ) x. ( C ^ 2 ) ) = ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY B ) ^ 2 ) ) ) |
162 |
160 161
|
oveq12d |
|- ( ph -> ( ( D ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( C ^ 2 ) ) ) = ( ( ( A rmX B ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY B ) ^ 2 ) ) ) ) |
163 |
|
rmxynorm |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) -> ( ( ( A rmX B ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY B ) ^ 2 ) ) ) = 1 ) |
164 |
1 13 163
|
syl2anc |
|- ( ph -> ( ( ( A rmX B ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY B ) ^ 2 ) ) ) = 1 ) |
165 |
162 164
|
eqtrd |
|- ( ph -> ( ( D ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( C ^ 2 ) ) ) = 1 ) |
166 |
8
|
oveq1i |
|- ( F ^ 2 ) = ( ( A rmX ( 2 x. Q ) ) ^ 2 ) |
167 |
7
|
oveq1i |
|- ( E ^ 2 ) = ( ( A rmY ( 2 x. Q ) ) ^ 2 ) |
168 |
167
|
oveq2i |
|- ( ( ( A ^ 2 ) - 1 ) x. ( E ^ 2 ) ) = ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY ( 2 x. Q ) ) ^ 2 ) ) |
169 |
166 168
|
oveq12i |
|- ( ( F ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( E ^ 2 ) ) ) = ( ( ( A rmX ( 2 x. Q ) ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY ( 2 x. Q ) ) ^ 2 ) ) ) |
170 |
|
rmxynorm |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( 2 x. Q ) e. ZZ ) -> ( ( ( A rmX ( 2 x. Q ) ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY ( 2 x. Q ) ) ^ 2 ) ) ) = 1 ) |
171 |
1 24 170
|
syl2anc |
|- ( ph -> ( ( ( A rmX ( 2 x. Q ) ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY ( 2 x. Q ) ) ^ 2 ) ) ) = 1 ) |
172 |
169 171
|
syl5eq |
|- ( ph -> ( ( F ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( E ^ 2 ) ) ) = 1 ) |
173 |
165 172 85
|
3jca |
|- ( ph -> ( ( ( D ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( C ^ 2 ) ) ) = 1 /\ ( ( F ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( E ^ 2 ) ) ) = 1 /\ G e. ( ZZ>= ` 2 ) ) ) |
174 |
11
|
oveq1i |
|- ( I ^ 2 ) = ( ( G rmX B ) ^ 2 ) |
175 |
10
|
oveq1i |
|- ( H ^ 2 ) = ( ( G rmY B ) ^ 2 ) |
176 |
175
|
oveq2i |
|- ( ( ( G ^ 2 ) - 1 ) x. ( H ^ 2 ) ) = ( ( ( G ^ 2 ) - 1 ) x. ( ( G rmY B ) ^ 2 ) ) |
177 |
174 176
|
oveq12i |
|- ( ( I ^ 2 ) - ( ( ( G ^ 2 ) - 1 ) x. ( H ^ 2 ) ) ) = ( ( ( G rmX B ) ^ 2 ) - ( ( ( G ^ 2 ) - 1 ) x. ( ( G rmY B ) ^ 2 ) ) ) |
178 |
|
rmxynorm |
|- ( ( G e. ( ZZ>= ` 2 ) /\ B e. ZZ ) -> ( ( ( G rmX B ) ^ 2 ) - ( ( ( G ^ 2 ) - 1 ) x. ( ( G rmY B ) ^ 2 ) ) ) = 1 ) |
179 |
85 13 178
|
syl2anc |
|- ( ph -> ( ( ( G rmX B ) ^ 2 ) - ( ( ( G ^ 2 ) - 1 ) x. ( ( G rmY B ) ^ 2 ) ) ) = 1 ) |
180 |
177 179
|
syl5eq |
|- ( ph -> ( ( I ^ 2 ) - ( ( ( G ^ 2 ) - 1 ) x. ( H ^ 2 ) ) ) = 1 ) |
181 |
12
|
a1i |
|- ( ph -> J = ( ( E / ( 2 x. ( C ^ 2 ) ) ) - 1 ) ) |
182 |
181
|
oveq1d |
|- ( ph -> ( J + 1 ) = ( ( ( E / ( 2 x. ( C ^ 2 ) ) ) - 1 ) + 1 ) ) |
183 |
141
|
zcnd |
|- ( ph -> E e. CC ) |
184 |
152
|
nncnd |
|- ( ph -> ( 2 x. ( C ^ 2 ) ) e. CC ) |
185 |
152
|
nnne0d |
|- ( ph -> ( 2 x. ( C ^ 2 ) ) =/= 0 ) |
186 |
183 184 185
|
divcld |
|- ( ph -> ( E / ( 2 x. ( C ^ 2 ) ) ) e. CC ) |
187 |
|
ax-1cn |
|- 1 e. CC |
188 |
|
npcan |
|- ( ( ( E / ( 2 x. ( C ^ 2 ) ) ) e. CC /\ 1 e. CC ) -> ( ( ( E / ( 2 x. ( C ^ 2 ) ) ) - 1 ) + 1 ) = ( E / ( 2 x. ( C ^ 2 ) ) ) ) |
189 |
186 187 188
|
sylancl |
|- ( ph -> ( ( ( E / ( 2 x. ( C ^ 2 ) ) ) - 1 ) + 1 ) = ( E / ( 2 x. ( C ^ 2 ) ) ) ) |
190 |
182 189
|
eqtrd |
|- ( ph -> ( J + 1 ) = ( E / ( 2 x. ( C ^ 2 ) ) ) ) |
191 |
190
|
oveq1d |
|- ( ph -> ( ( J + 1 ) x. ( 2 x. ( C ^ 2 ) ) ) = ( ( E / ( 2 x. ( C ^ 2 ) ) ) x. ( 2 x. ( C ^ 2 ) ) ) ) |
192 |
183 184 185
|
divcan1d |
|- ( ph -> ( ( E / ( 2 x. ( C ^ 2 ) ) ) x. ( 2 x. ( C ^ 2 ) ) ) = E ) |
193 |
191 192
|
eqtr2d |
|- ( ph -> E = ( ( J + 1 ) x. ( 2 x. ( C ^ 2 ) ) ) ) |
194 |
48
|
nn0zd |
|- ( ph -> F e. ZZ ) |
195 |
81
|
nn0zd |
|- ( ph -> ( ( F ^ 2 ) - A ) e. ZZ ) |
196 |
194 195
|
zmulcld |
|- ( ph -> ( F x. ( ( F ^ 2 ) - A ) ) e. ZZ ) |
197 |
|
dvdsmul1 |
|- ( ( F e. ZZ /\ ( F x. ( ( F ^ 2 ) - A ) ) e. ZZ ) -> F || ( F x. ( F x. ( ( F ^ 2 ) - A ) ) ) ) |
198 |
194 196 197
|
syl2anc |
|- ( ph -> F || ( F x. ( F x. ( ( F ^ 2 ) - A ) ) ) ) |
199 |
9
|
oveq1i |
|- ( G - A ) = ( ( A + ( ( F ^ 2 ) x. ( ( F ^ 2 ) - A ) ) ) - A ) |
200 |
57
|
nn0cnd |
|- ( ph -> A e. CC ) |
201 |
82
|
nn0cnd |
|- ( ph -> ( ( F ^ 2 ) x. ( ( F ^ 2 ) - A ) ) e. CC ) |
202 |
200 201
|
pncan2d |
|- ( ph -> ( ( A + ( ( F ^ 2 ) x. ( ( F ^ 2 ) - A ) ) ) - A ) = ( ( F ^ 2 ) x. ( ( F ^ 2 ) - A ) ) ) |
203 |
52
|
oveq1d |
|- ( ph -> ( ( F ^ 2 ) x. ( ( F ^ 2 ) - A ) ) = ( ( F x. F ) x. ( ( F ^ 2 ) - A ) ) ) |
204 |
81
|
nn0cnd |
|- ( ph -> ( ( F ^ 2 ) - A ) e. CC ) |
205 |
51 51 204
|
mulassd |
|- ( ph -> ( ( F x. F ) x. ( ( F ^ 2 ) - A ) ) = ( F x. ( F x. ( ( F ^ 2 ) - A ) ) ) ) |
206 |
202 203 205
|
3eqtrd |
|- ( ph -> ( ( A + ( ( F ^ 2 ) x. ( ( F ^ 2 ) - A ) ) ) - A ) = ( F x. ( F x. ( ( F ^ 2 ) - A ) ) ) ) |
207 |
199 206
|
syl5eq |
|- ( ph -> ( G - A ) = ( F x. ( F x. ( ( F ^ 2 ) - A ) ) ) ) |
208 |
198 207
|
breqtrrd |
|- ( ph -> F || ( G - A ) ) |
209 |
180 193 208
|
3jca |
|- ( ph -> ( ( ( I ^ 2 ) - ( ( ( G ^ 2 ) - 1 ) x. ( H ^ 2 ) ) ) = 1 /\ E = ( ( J + 1 ) x. ( 2 x. ( C ^ 2 ) ) ) /\ F || ( G - A ) ) ) |
210 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ C e. ZZ ) -> ( 2 x. C ) e. ZZ ) |
211 |
18 19 210
|
sylancr |
|- ( ph -> ( 2 x. C ) e. ZZ ) |
212 |
|
eluzelz |
|- ( A e. ( ZZ>= ` 2 ) -> A e. ZZ ) |
213 |
1 212
|
syl |
|- ( ph -> A e. ZZ ) |
214 |
82
|
nn0zd |
|- ( ph -> ( ( F ^ 2 ) x. ( ( F ^ 2 ) - A ) ) e. ZZ ) |
215 |
|
1z |
|- 1 e. ZZ |
216 |
|
zsubcl |
|- ( ( 1 e. ZZ /\ A e. ZZ ) -> ( 1 - A ) e. ZZ ) |
217 |
215 213 216
|
sylancr |
|- ( ph -> ( 1 - A ) e. ZZ ) |
218 |
|
zmulcl |
|- ( ( 1 e. ZZ /\ ( 1 - A ) e. ZZ ) -> ( 1 x. ( 1 - A ) ) e. ZZ ) |
219 |
215 217 218
|
sylancr |
|- ( ph -> ( 1 x. ( 1 - A ) ) e. ZZ ) |
220 |
|
congid |
|- ( ( ( 2 x. C ) e. ZZ /\ A e. ZZ ) -> ( 2 x. C ) || ( A - A ) ) |
221 |
211 213 220
|
syl2anc |
|- ( ph -> ( 2 x. C ) || ( A - A ) ) |
222 |
54
|
nn0zd |
|- ( ph -> ( F ^ 2 ) e. ZZ ) |
223 |
215
|
a1i |
|- ( ph -> 1 e. ZZ ) |
224 |
3
|
nncnd |
|- ( ph -> C e. CC ) |
225 |
130 224 224
|
mulassd |
|- ( ph -> ( ( 2 x. C ) x. C ) = ( 2 x. ( C x. C ) ) ) |
226 |
224
|
sqvald |
|- ( ph -> ( C ^ 2 ) = ( C x. C ) ) |
227 |
226
|
oveq2d |
|- ( ph -> ( 2 x. ( C ^ 2 ) ) = ( 2 x. ( C x. C ) ) ) |
228 |
225 227
|
eqtr4d |
|- ( ph -> ( ( 2 x. C ) x. C ) = ( 2 x. ( C ^ 2 ) ) ) |
229 |
228 140
|
eqbrtrd |
|- ( ph -> ( ( 2 x. C ) x. C ) || E ) |
230 |
|
muldvds1 |
|- ( ( ( 2 x. C ) e. ZZ /\ C e. ZZ /\ E e. ZZ ) -> ( ( ( 2 x. C ) x. C ) || E -> ( 2 x. C ) || E ) ) |
231 |
211 19 141 230
|
syl3anc |
|- ( ph -> ( ( ( 2 x. C ) x. C ) || E -> ( 2 x. C ) || E ) ) |
232 |
229 231
|
mpd |
|- ( ph -> ( 2 x. C ) || E ) |
233 |
|
zsqcl |
|- ( A e. ZZ -> ( A ^ 2 ) e. ZZ ) |
234 |
213 233
|
syl |
|- ( ph -> ( A ^ 2 ) e. ZZ ) |
235 |
|
peano2zm |
|- ( ( A ^ 2 ) e. ZZ -> ( ( A ^ 2 ) - 1 ) e. ZZ ) |
236 |
234 235
|
syl |
|- ( ph -> ( ( A ^ 2 ) - 1 ) e. ZZ ) |
237 |
236 141
|
zmulcld |
|- ( ph -> ( ( ( A ^ 2 ) - 1 ) x. E ) e. ZZ ) |
238 |
|
dvdsmultr2 |
|- ( ( ( 2 x. C ) e. ZZ /\ ( ( ( A ^ 2 ) - 1 ) x. E ) e. ZZ /\ E e. ZZ ) -> ( ( 2 x. C ) || E -> ( 2 x. C ) || ( ( ( ( A ^ 2 ) - 1 ) x. E ) x. E ) ) ) |
239 |
211 237 141 238
|
syl3anc |
|- ( ph -> ( ( 2 x. C ) || E -> ( 2 x. C ) || ( ( ( ( A ^ 2 ) - 1 ) x. E ) x. E ) ) ) |
240 |
232 239
|
mpd |
|- ( ph -> ( 2 x. C ) || ( ( ( ( A ^ 2 ) - 1 ) x. E ) x. E ) ) |
241 |
183
|
sqvald |
|- ( ph -> ( E ^ 2 ) = ( E x. E ) ) |
242 |
241
|
oveq2d |
|- ( ph -> ( ( ( A ^ 2 ) - 1 ) x. ( E ^ 2 ) ) = ( ( ( A ^ 2 ) - 1 ) x. ( E x. E ) ) ) |
243 |
200
|
sqcld |
|- ( ph -> ( A ^ 2 ) e. CC ) |
244 |
|
subcl |
|- ( ( ( A ^ 2 ) e. CC /\ 1 e. CC ) -> ( ( A ^ 2 ) - 1 ) e. CC ) |
245 |
243 187 244
|
sylancl |
|- ( ph -> ( ( A ^ 2 ) - 1 ) e. CC ) |
246 |
245 183 183
|
mulassd |
|- ( ph -> ( ( ( ( A ^ 2 ) - 1 ) x. E ) x. E ) = ( ( ( A ^ 2 ) - 1 ) x. ( E x. E ) ) ) |
247 |
242 246
|
eqtr4d |
|- ( ph -> ( ( ( A ^ 2 ) - 1 ) x. ( E ^ 2 ) ) = ( ( ( ( A ^ 2 ) - 1 ) x. E ) x. E ) ) |
248 |
240 247
|
breqtrrd |
|- ( ph -> ( 2 x. C ) || ( ( ( A ^ 2 ) - 1 ) x. ( E ^ 2 ) ) ) |
249 |
51
|
sqcld |
|- ( ph -> ( F ^ 2 ) e. CC ) |
250 |
183
|
sqcld |
|- ( ph -> ( E ^ 2 ) e. CC ) |
251 |
245 250
|
mulcld |
|- ( ph -> ( ( ( A ^ 2 ) - 1 ) x. ( E ^ 2 ) ) e. CC ) |
252 |
187
|
a1i |
|- ( ph -> 1 e. CC ) |
253 |
|
subsub23 |
|- ( ( ( F ^ 2 ) e. CC /\ ( ( ( A ^ 2 ) - 1 ) x. ( E ^ 2 ) ) e. CC /\ 1 e. CC ) -> ( ( ( F ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( E ^ 2 ) ) ) = 1 <-> ( ( F ^ 2 ) - 1 ) = ( ( ( A ^ 2 ) - 1 ) x. ( E ^ 2 ) ) ) ) |
254 |
249 251 252 253
|
syl3anc |
|- ( ph -> ( ( ( F ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( E ^ 2 ) ) ) = 1 <-> ( ( F ^ 2 ) - 1 ) = ( ( ( A ^ 2 ) - 1 ) x. ( E ^ 2 ) ) ) ) |
255 |
172 254
|
mpbid |
|- ( ph -> ( ( F ^ 2 ) - 1 ) = ( ( ( A ^ 2 ) - 1 ) x. ( E ^ 2 ) ) ) |
256 |
248 255
|
breqtrrd |
|- ( ph -> ( 2 x. C ) || ( ( F ^ 2 ) - 1 ) ) |
257 |
|
congsub |
|- ( ( ( ( 2 x. C ) e. ZZ /\ ( F ^ 2 ) e. ZZ /\ 1 e. ZZ ) /\ ( A e. ZZ /\ A e. ZZ ) /\ ( ( 2 x. C ) || ( ( F ^ 2 ) - 1 ) /\ ( 2 x. C ) || ( A - A ) ) ) -> ( 2 x. C ) || ( ( ( F ^ 2 ) - A ) - ( 1 - A ) ) ) |
258 |
211 222 223 213 213 256 221 257
|
syl322anc |
|- ( ph -> ( 2 x. C ) || ( ( ( F ^ 2 ) - A ) - ( 1 - A ) ) ) |
259 |
|
congmul |
|- ( ( ( ( 2 x. C ) e. ZZ /\ ( F ^ 2 ) e. ZZ /\ 1 e. ZZ ) /\ ( ( ( F ^ 2 ) - A ) e. ZZ /\ ( 1 - A ) e. ZZ ) /\ ( ( 2 x. C ) || ( ( F ^ 2 ) - 1 ) /\ ( 2 x. C ) || ( ( ( F ^ 2 ) - A ) - ( 1 - A ) ) ) ) -> ( 2 x. C ) || ( ( ( F ^ 2 ) x. ( ( F ^ 2 ) - A ) ) - ( 1 x. ( 1 - A ) ) ) ) |
260 |
211 222 223 195 217 256 258 259
|
syl322anc |
|- ( ph -> ( 2 x. C ) || ( ( ( F ^ 2 ) x. ( ( F ^ 2 ) - A ) ) - ( 1 x. ( 1 - A ) ) ) ) |
261 |
|
congadd |
|- ( ( ( ( 2 x. C ) e. ZZ /\ A e. ZZ /\ A e. ZZ ) /\ ( ( ( F ^ 2 ) x. ( ( F ^ 2 ) - A ) ) e. ZZ /\ ( 1 x. ( 1 - A ) ) e. ZZ ) /\ ( ( 2 x. C ) || ( A - A ) /\ ( 2 x. C ) || ( ( ( F ^ 2 ) x. ( ( F ^ 2 ) - A ) ) - ( 1 x. ( 1 - A ) ) ) ) ) -> ( 2 x. C ) || ( ( A + ( ( F ^ 2 ) x. ( ( F ^ 2 ) - A ) ) ) - ( A + ( 1 x. ( 1 - A ) ) ) ) ) |
262 |
211 213 213 214 219 221 260 261
|
syl322anc |
|- ( ph -> ( 2 x. C ) || ( ( A + ( ( F ^ 2 ) x. ( ( F ^ 2 ) - A ) ) ) - ( A + ( 1 x. ( 1 - A ) ) ) ) ) |
263 |
9
|
a1i |
|- ( ph -> G = ( A + ( ( F ^ 2 ) x. ( ( F ^ 2 ) - A ) ) ) ) |
264 |
217
|
zcnd |
|- ( ph -> ( 1 - A ) e. CC ) |
265 |
264
|
mulid2d |
|- ( ph -> ( 1 x. ( 1 - A ) ) = ( 1 - A ) ) |
266 |
265
|
oveq2d |
|- ( ph -> ( A + ( 1 x. ( 1 - A ) ) ) = ( A + ( 1 - A ) ) ) |
267 |
|
pncan3 |
|- ( ( A e. CC /\ 1 e. CC ) -> ( A + ( 1 - A ) ) = 1 ) |
268 |
200 187 267
|
sylancl |
|- ( ph -> ( A + ( 1 - A ) ) = 1 ) |
269 |
266 268
|
eqtr2d |
|- ( ph -> 1 = ( A + ( 1 x. ( 1 - A ) ) ) ) |
270 |
263 269
|
oveq12d |
|- ( ph -> ( G - 1 ) = ( ( A + ( ( F ^ 2 ) x. ( ( F ^ 2 ) - A ) ) ) - ( A + ( 1 x. ( 1 - A ) ) ) ) ) |
271 |
262 270
|
breqtrrd |
|- ( ph -> ( 2 x. C ) || ( G - 1 ) ) |
272 |
|
eluzelz |
|- ( G e. ( ZZ>= ` 2 ) -> G e. ZZ ) |
273 |
85 272
|
syl |
|- ( ph -> G e. ZZ ) |
274 |
273 213
|
zsubcld |
|- ( ph -> ( G - A ) e. ZZ ) |
275 |
10 89
|
eqeltrid |
|- ( ph -> H e. ZZ ) |
276 |
275 19
|
zsubcld |
|- ( ph -> ( H - C ) e. ZZ ) |
277 |
|
jm2.15nn0 |
|- ( ( G e. ( ZZ>= ` 2 ) /\ A e. ( ZZ>= ` 2 ) /\ B e. NN0 ) -> ( G - A ) || ( ( G rmY B ) - ( A rmY B ) ) ) |
278 |
85 1 92 277
|
syl3anc |
|- ( ph -> ( G - A ) || ( ( G rmY B ) - ( A rmY B ) ) ) |
279 |
10
|
a1i |
|- ( ph -> H = ( G rmY B ) ) |
280 |
279 4
|
oveq12d |
|- ( ph -> ( H - C ) = ( ( G rmY B ) - ( A rmY B ) ) ) |
281 |
278 280
|
breqtrrd |
|- ( ph -> ( G - A ) || ( H - C ) ) |
282 |
194 274 276 208 281
|
dvdstrd |
|- ( ph -> F || ( H - C ) ) |
283 |
|
peano2zm |
|- ( G e. ZZ -> ( G - 1 ) e. ZZ ) |
284 |
273 283
|
syl |
|- ( ph -> ( G - 1 ) e. ZZ ) |
285 |
275 13
|
zsubcld |
|- ( ph -> ( H - B ) e. ZZ ) |
286 |
|
jm2.16nn0 |
|- ( ( G e. ( ZZ>= ` 2 ) /\ B e. NN0 ) -> ( G - 1 ) || ( ( G rmY B ) - B ) ) |
287 |
85 92 286
|
syl2anc |
|- ( ph -> ( G - 1 ) || ( ( G rmY B ) - B ) ) |
288 |
10
|
oveq1i |
|- ( H - B ) = ( ( G rmY B ) - B ) |
289 |
287 288
|
breqtrrdi |
|- ( ph -> ( G - 1 ) || ( H - B ) ) |
290 |
211 284 285 271 289
|
dvdstrd |
|- ( ph -> ( 2 x. C ) || ( H - B ) ) |
291 |
|
rmygeid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN0 ) -> B <_ ( A rmY B ) ) |
292 |
1 92 291
|
syl2anc |
|- ( ph -> B <_ ( A rmY B ) ) |
293 |
292 4
|
breqtrrd |
|- ( ph -> B <_ C ) |
294 |
290 293
|
jca |
|- ( ph -> ( ( 2 x. C ) || ( H - B ) /\ B <_ C ) ) |
295 |
271 282 294
|
jca31 |
|- ( ph -> ( ( ( 2 x. C ) || ( G - 1 ) /\ F || ( H - C ) ) /\ ( ( 2 x. C ) || ( H - B ) /\ B <_ C ) ) ) |
296 |
173 209 295
|
jca31 |
|- ( ph -> ( ( ( ( ( D ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( C ^ 2 ) ) ) = 1 /\ ( ( F ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( E ^ 2 ) ) ) = 1 /\ G e. ( ZZ>= ` 2 ) ) /\ ( ( ( I ^ 2 ) - ( ( ( G ^ 2 ) - 1 ) x. ( H ^ 2 ) ) ) = 1 /\ E = ( ( J + 1 ) x. ( 2 x. ( C ^ 2 ) ) ) /\ F || ( G - A ) ) ) /\ ( ( ( 2 x. C ) || ( G - 1 ) /\ F || ( H - C ) ) /\ ( ( 2 x. C ) || ( H - B ) /\ B <_ C ) ) ) ) |
297 |
158 296
|
jca |
|- ( ph -> ( J e. NN0 /\ ( ( ( ( ( D ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( C ^ 2 ) ) ) = 1 /\ ( ( F ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( E ^ 2 ) ) ) = 1 /\ G e. ( ZZ>= ` 2 ) ) /\ ( ( ( I ^ 2 ) - ( ( ( G ^ 2 ) - 1 ) x. ( H ^ 2 ) ) ) = 1 /\ E = ( ( J + 1 ) x. ( 2 x. ( C ^ 2 ) ) ) /\ F || ( G - A ) ) ) /\ ( ( ( 2 x. C ) || ( G - 1 ) /\ F || ( H - C ) ) /\ ( ( 2 x. C ) || ( H - B ) /\ B <_ C ) ) ) ) ) |
298 |
49 104 297
|
jca31 |
|- ( ph -> ( ( ( D e. NN0 /\ E e. NN0 /\ F e. NN0 ) /\ ( G e. NN0 /\ H e. NN0 /\ I e. NN0 ) ) /\ ( J e. NN0 /\ ( ( ( ( ( D ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( C ^ 2 ) ) ) = 1 /\ ( ( F ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( E ^ 2 ) ) ) = 1 /\ G e. ( ZZ>= ` 2 ) ) /\ ( ( ( I ^ 2 ) - ( ( ( G ^ 2 ) - 1 ) x. ( H ^ 2 ) ) ) = 1 /\ E = ( ( J + 1 ) x. ( 2 x. ( C ^ 2 ) ) ) /\ F || ( G - A ) ) ) /\ ( ( ( 2 x. C ) || ( G - 1 ) /\ F || ( H - C ) ) /\ ( ( 2 x. C ) || ( H - B ) /\ B <_ C ) ) ) ) ) ) |