Step |
Hyp |
Ref |
Expression |
1 |
|
lecldbas.1 |
|- F = ( x e. ran [,] |-> ( RR* \ x ) ) |
2 |
|
eqid |
|- ran ( y e. RR* |-> ( y (,] +oo ) ) = ran ( y e. RR* |-> ( y (,] +oo ) ) |
3 |
|
eqid |
|- ran ( y e. RR* |-> ( -oo [,) y ) ) = ran ( y e. RR* |-> ( -oo [,) y ) ) |
4 |
2 3
|
leordtval2 |
|- ( ordTop ` <_ ) = ( topGen ` ( fi ` ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) ) ) |
5 |
|
fvex |
|- ( fi ` ran F ) e. _V |
6 |
|
fvex |
|- ( ordTop ` <_ ) e. _V |
7 |
|
iccf |
|- [,] : ( RR* X. RR* ) --> ~P RR* |
8 |
|
ffn |
|- ( [,] : ( RR* X. RR* ) --> ~P RR* -> [,] Fn ( RR* X. RR* ) ) |
9 |
7 8
|
ax-mp |
|- [,] Fn ( RR* X. RR* ) |
10 |
|
ovelrn |
|- ( [,] Fn ( RR* X. RR* ) -> ( x e. ran [,] <-> E. a e. RR* E. b e. RR* x = ( a [,] b ) ) ) |
11 |
9 10
|
ax-mp |
|- ( x e. ran [,] <-> E. a e. RR* E. b e. RR* x = ( a [,] b ) ) |
12 |
|
difeq2 |
|- ( x = ( a [,] b ) -> ( RR* \ x ) = ( RR* \ ( a [,] b ) ) ) |
13 |
|
iccordt |
|- ( a [,] b ) e. ( Clsd ` ( ordTop ` <_ ) ) |
14 |
|
letopuni |
|- RR* = U. ( ordTop ` <_ ) |
15 |
14
|
cldopn |
|- ( ( a [,] b ) e. ( Clsd ` ( ordTop ` <_ ) ) -> ( RR* \ ( a [,] b ) ) e. ( ordTop ` <_ ) ) |
16 |
13 15
|
ax-mp |
|- ( RR* \ ( a [,] b ) ) e. ( ordTop ` <_ ) |
17 |
12 16
|
eqeltrdi |
|- ( x = ( a [,] b ) -> ( RR* \ x ) e. ( ordTop ` <_ ) ) |
18 |
17
|
rexlimivw |
|- ( E. b e. RR* x = ( a [,] b ) -> ( RR* \ x ) e. ( ordTop ` <_ ) ) |
19 |
18
|
rexlimivw |
|- ( E. a e. RR* E. b e. RR* x = ( a [,] b ) -> ( RR* \ x ) e. ( ordTop ` <_ ) ) |
20 |
11 19
|
sylbi |
|- ( x e. ran [,] -> ( RR* \ x ) e. ( ordTop ` <_ ) ) |
21 |
1 20
|
fmpti |
|- F : ran [,] --> ( ordTop ` <_ ) |
22 |
|
frn |
|- ( F : ran [,] --> ( ordTop ` <_ ) -> ran F C_ ( ordTop ` <_ ) ) |
23 |
21 22
|
ax-mp |
|- ran F C_ ( ordTop ` <_ ) |
24 |
6 23
|
ssexi |
|- ran F e. _V |
25 |
|
eqid |
|- ( y e. RR* |-> ( y (,] +oo ) ) = ( y e. RR* |-> ( y (,] +oo ) ) |
26 |
|
mnfxr |
|- -oo e. RR* |
27 |
|
fnovrn |
|- ( ( [,] Fn ( RR* X. RR* ) /\ -oo e. RR* /\ y e. RR* ) -> ( -oo [,] y ) e. ran [,] ) |
28 |
9 26 27
|
mp3an12 |
|- ( y e. RR* -> ( -oo [,] y ) e. ran [,] ) |
29 |
26
|
a1i |
|- ( y e. RR* -> -oo e. RR* ) |
30 |
|
id |
|- ( y e. RR* -> y e. RR* ) |
31 |
|
pnfxr |
|- +oo e. RR* |
32 |
31
|
a1i |
|- ( y e. RR* -> +oo e. RR* ) |
33 |
|
mnfle |
|- ( y e. RR* -> -oo <_ y ) |
34 |
|
pnfge |
|- ( y e. RR* -> y <_ +oo ) |
35 |
|
df-icc |
|- [,] = ( a e. RR* , b e. RR* |-> { c e. RR* | ( a <_ c /\ c <_ b ) } ) |
36 |
|
df-ioc |
|- (,] = ( a e. RR* , b e. RR* |-> { c e. RR* | ( a < c /\ c <_ b ) } ) |
37 |
|
xrltnle |
|- ( ( y e. RR* /\ z e. RR* ) -> ( y < z <-> -. z <_ y ) ) |
38 |
|
xrletr |
|- ( ( z e. RR* /\ y e. RR* /\ +oo e. RR* ) -> ( ( z <_ y /\ y <_ +oo ) -> z <_ +oo ) ) |
39 |
|
xrlelttr |
|- ( ( -oo e. RR* /\ y e. RR* /\ z e. RR* ) -> ( ( -oo <_ y /\ y < z ) -> -oo < z ) ) |
40 |
|
xrltle |
|- ( ( -oo e. RR* /\ z e. RR* ) -> ( -oo < z -> -oo <_ z ) ) |
41 |
40
|
3adant2 |
|- ( ( -oo e. RR* /\ y e. RR* /\ z e. RR* ) -> ( -oo < z -> -oo <_ z ) ) |
42 |
39 41
|
syld |
|- ( ( -oo e. RR* /\ y e. RR* /\ z e. RR* ) -> ( ( -oo <_ y /\ y < z ) -> -oo <_ z ) ) |
43 |
35 36 37 35 38 42
|
ixxun |
|- ( ( ( -oo e. RR* /\ y e. RR* /\ +oo e. RR* ) /\ ( -oo <_ y /\ y <_ +oo ) ) -> ( ( -oo [,] y ) u. ( y (,] +oo ) ) = ( -oo [,] +oo ) ) |
44 |
29 30 32 33 34 43
|
syl32anc |
|- ( y e. RR* -> ( ( -oo [,] y ) u. ( y (,] +oo ) ) = ( -oo [,] +oo ) ) |
45 |
|
iccmax |
|- ( -oo [,] +oo ) = RR* |
46 |
44 45
|
eqtrdi |
|- ( y e. RR* -> ( ( -oo [,] y ) u. ( y (,] +oo ) ) = RR* ) |
47 |
|
iccssxr |
|- ( -oo [,] y ) C_ RR* |
48 |
35 36 37
|
ixxdisj |
|- ( ( -oo e. RR* /\ y e. RR* /\ +oo e. RR* ) -> ( ( -oo [,] y ) i^i ( y (,] +oo ) ) = (/) ) |
49 |
26 31 48
|
mp3an13 |
|- ( y e. RR* -> ( ( -oo [,] y ) i^i ( y (,] +oo ) ) = (/) ) |
50 |
|
uneqdifeq |
|- ( ( ( -oo [,] y ) C_ RR* /\ ( ( -oo [,] y ) i^i ( y (,] +oo ) ) = (/) ) -> ( ( ( -oo [,] y ) u. ( y (,] +oo ) ) = RR* <-> ( RR* \ ( -oo [,] y ) ) = ( y (,] +oo ) ) ) |
51 |
47 49 50
|
sylancr |
|- ( y e. RR* -> ( ( ( -oo [,] y ) u. ( y (,] +oo ) ) = RR* <-> ( RR* \ ( -oo [,] y ) ) = ( y (,] +oo ) ) ) |
52 |
46 51
|
mpbid |
|- ( y e. RR* -> ( RR* \ ( -oo [,] y ) ) = ( y (,] +oo ) ) |
53 |
52
|
eqcomd |
|- ( y e. RR* -> ( y (,] +oo ) = ( RR* \ ( -oo [,] y ) ) ) |
54 |
|
difeq2 |
|- ( x = ( -oo [,] y ) -> ( RR* \ x ) = ( RR* \ ( -oo [,] y ) ) ) |
55 |
54
|
rspceeqv |
|- ( ( ( -oo [,] y ) e. ran [,] /\ ( y (,] +oo ) = ( RR* \ ( -oo [,] y ) ) ) -> E. x e. ran [,] ( y (,] +oo ) = ( RR* \ x ) ) |
56 |
28 53 55
|
syl2anc |
|- ( y e. RR* -> E. x e. ran [,] ( y (,] +oo ) = ( RR* \ x ) ) |
57 |
|
xrex |
|- RR* e. _V |
58 |
57
|
difexi |
|- ( RR* \ x ) e. _V |
59 |
1 58
|
elrnmpti |
|- ( ( y (,] +oo ) e. ran F <-> E. x e. ran [,] ( y (,] +oo ) = ( RR* \ x ) ) |
60 |
56 59
|
sylibr |
|- ( y e. RR* -> ( y (,] +oo ) e. ran F ) |
61 |
25 60
|
fmpti |
|- ( y e. RR* |-> ( y (,] +oo ) ) : RR* --> ran F |
62 |
|
frn |
|- ( ( y e. RR* |-> ( y (,] +oo ) ) : RR* --> ran F -> ran ( y e. RR* |-> ( y (,] +oo ) ) C_ ran F ) |
63 |
61 62
|
ax-mp |
|- ran ( y e. RR* |-> ( y (,] +oo ) ) C_ ran F |
64 |
|
eqid |
|- ( y e. RR* |-> ( -oo [,) y ) ) = ( y e. RR* |-> ( -oo [,) y ) ) |
65 |
|
fnovrn |
|- ( ( [,] Fn ( RR* X. RR* ) /\ y e. RR* /\ +oo e. RR* ) -> ( y [,] +oo ) e. ran [,] ) |
66 |
9 31 65
|
mp3an13 |
|- ( y e. RR* -> ( y [,] +oo ) e. ran [,] ) |
67 |
|
df-ico |
|- [,) = ( a e. RR* , b e. RR* |-> { c e. RR* | ( a <_ c /\ c < b ) } ) |
68 |
|
xrlenlt |
|- ( ( y e. RR* /\ z e. RR* ) -> ( y <_ z <-> -. z < y ) ) |
69 |
|
xrltletr |
|- ( ( z e. RR* /\ y e. RR* /\ +oo e. RR* ) -> ( ( z < y /\ y <_ +oo ) -> z < +oo ) ) |
70 |
|
xrltle |
|- ( ( z e. RR* /\ +oo e. RR* ) -> ( z < +oo -> z <_ +oo ) ) |
71 |
70
|
3adant2 |
|- ( ( z e. RR* /\ y e. RR* /\ +oo e. RR* ) -> ( z < +oo -> z <_ +oo ) ) |
72 |
69 71
|
syld |
|- ( ( z e. RR* /\ y e. RR* /\ +oo e. RR* ) -> ( ( z < y /\ y <_ +oo ) -> z <_ +oo ) ) |
73 |
|
xrletr |
|- ( ( -oo e. RR* /\ y e. RR* /\ z e. RR* ) -> ( ( -oo <_ y /\ y <_ z ) -> -oo <_ z ) ) |
74 |
67 35 68 35 72 73
|
ixxun |
|- ( ( ( -oo e. RR* /\ y e. RR* /\ +oo e. RR* ) /\ ( -oo <_ y /\ y <_ +oo ) ) -> ( ( -oo [,) y ) u. ( y [,] +oo ) ) = ( -oo [,] +oo ) ) |
75 |
29 30 32 33 34 74
|
syl32anc |
|- ( y e. RR* -> ( ( -oo [,) y ) u. ( y [,] +oo ) ) = ( -oo [,] +oo ) ) |
76 |
|
uncom |
|- ( ( -oo [,) y ) u. ( y [,] +oo ) ) = ( ( y [,] +oo ) u. ( -oo [,) y ) ) |
77 |
75 76 45
|
3eqtr3g |
|- ( y e. RR* -> ( ( y [,] +oo ) u. ( -oo [,) y ) ) = RR* ) |
78 |
|
iccssxr |
|- ( y [,] +oo ) C_ RR* |
79 |
|
incom |
|- ( ( y [,] +oo ) i^i ( -oo [,) y ) ) = ( ( -oo [,) y ) i^i ( y [,] +oo ) ) |
80 |
67 35 68
|
ixxdisj |
|- ( ( -oo e. RR* /\ y e. RR* /\ +oo e. RR* ) -> ( ( -oo [,) y ) i^i ( y [,] +oo ) ) = (/) ) |
81 |
26 31 80
|
mp3an13 |
|- ( y e. RR* -> ( ( -oo [,) y ) i^i ( y [,] +oo ) ) = (/) ) |
82 |
79 81
|
eqtrid |
|- ( y e. RR* -> ( ( y [,] +oo ) i^i ( -oo [,) y ) ) = (/) ) |
83 |
|
uneqdifeq |
|- ( ( ( y [,] +oo ) C_ RR* /\ ( ( y [,] +oo ) i^i ( -oo [,) y ) ) = (/) ) -> ( ( ( y [,] +oo ) u. ( -oo [,) y ) ) = RR* <-> ( RR* \ ( y [,] +oo ) ) = ( -oo [,) y ) ) ) |
84 |
78 82 83
|
sylancr |
|- ( y e. RR* -> ( ( ( y [,] +oo ) u. ( -oo [,) y ) ) = RR* <-> ( RR* \ ( y [,] +oo ) ) = ( -oo [,) y ) ) ) |
85 |
77 84
|
mpbid |
|- ( y e. RR* -> ( RR* \ ( y [,] +oo ) ) = ( -oo [,) y ) ) |
86 |
85
|
eqcomd |
|- ( y e. RR* -> ( -oo [,) y ) = ( RR* \ ( y [,] +oo ) ) ) |
87 |
|
difeq2 |
|- ( x = ( y [,] +oo ) -> ( RR* \ x ) = ( RR* \ ( y [,] +oo ) ) ) |
88 |
87
|
rspceeqv |
|- ( ( ( y [,] +oo ) e. ran [,] /\ ( -oo [,) y ) = ( RR* \ ( y [,] +oo ) ) ) -> E. x e. ran [,] ( -oo [,) y ) = ( RR* \ x ) ) |
89 |
66 86 88
|
syl2anc |
|- ( y e. RR* -> E. x e. ran [,] ( -oo [,) y ) = ( RR* \ x ) ) |
90 |
1 58
|
elrnmpti |
|- ( ( -oo [,) y ) e. ran F <-> E. x e. ran [,] ( -oo [,) y ) = ( RR* \ x ) ) |
91 |
89 90
|
sylibr |
|- ( y e. RR* -> ( -oo [,) y ) e. ran F ) |
92 |
64 91
|
fmpti |
|- ( y e. RR* |-> ( -oo [,) y ) ) : RR* --> ran F |
93 |
|
frn |
|- ( ( y e. RR* |-> ( -oo [,) y ) ) : RR* --> ran F -> ran ( y e. RR* |-> ( -oo [,) y ) ) C_ ran F ) |
94 |
92 93
|
ax-mp |
|- ran ( y e. RR* |-> ( -oo [,) y ) ) C_ ran F |
95 |
63 94
|
unssi |
|- ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) C_ ran F |
96 |
|
fiss |
|- ( ( ran F e. _V /\ ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) C_ ran F ) -> ( fi ` ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) ) C_ ( fi ` ran F ) ) |
97 |
24 95 96
|
mp2an |
|- ( fi ` ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) ) C_ ( fi ` ran F ) |
98 |
|
tgss |
|- ( ( ( fi ` ran F ) e. _V /\ ( fi ` ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) ) C_ ( fi ` ran F ) ) -> ( topGen ` ( fi ` ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) ) ) C_ ( topGen ` ( fi ` ran F ) ) ) |
99 |
5 97 98
|
mp2an |
|- ( topGen ` ( fi ` ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) ) ) C_ ( topGen ` ( fi ` ran F ) ) |
100 |
4 99
|
eqsstri |
|- ( ordTop ` <_ ) C_ ( topGen ` ( fi ` ran F ) ) |
101 |
|
letop |
|- ( ordTop ` <_ ) e. Top |
102 |
|
tgfiss |
|- ( ( ( ordTop ` <_ ) e. Top /\ ran F C_ ( ordTop ` <_ ) ) -> ( topGen ` ( fi ` ran F ) ) C_ ( ordTop ` <_ ) ) |
103 |
101 23 102
|
mp2an |
|- ( topGen ` ( fi ` ran F ) ) C_ ( ordTop ` <_ ) |
104 |
100 103
|
eqssi |
|- ( ordTop ` <_ ) = ( topGen ` ( fi ` ran F ) ) |