| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovolicc.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
ovolicc.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
ovolicc.3 |
|- ( ph -> A <_ B ) |
| 4 |
|
ovolicc1.4 |
|- G = ( n e. NN |-> if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) ) |
| 5 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 6 |
1 2 5
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 7 |
|
ovolcl |
|- ( ( A [,] B ) C_ RR -> ( vol* ` ( A [,] B ) ) e. RR* ) |
| 8 |
6 7
|
syl |
|- ( ph -> ( vol* ` ( A [,] B ) ) e. RR* ) |
| 9 |
|
df-br |
|- ( A <_ B <-> <. A , B >. e. <_ ) |
| 10 |
3 9
|
sylib |
|- ( ph -> <. A , B >. e. <_ ) |
| 11 |
1 2
|
opelxpd |
|- ( ph -> <. A , B >. e. ( RR X. RR ) ) |
| 12 |
10 11
|
elind |
|- ( ph -> <. A , B >. e. ( <_ i^i ( RR X. RR ) ) ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ n e. NN ) -> <. A , B >. e. ( <_ i^i ( RR X. RR ) ) ) |
| 14 |
|
0le0 |
|- 0 <_ 0 |
| 15 |
|
df-br |
|- ( 0 <_ 0 <-> <. 0 , 0 >. e. <_ ) |
| 16 |
14 15
|
mpbi |
|- <. 0 , 0 >. e. <_ |
| 17 |
|
0re |
|- 0 e. RR |
| 18 |
|
opelxpi |
|- ( ( 0 e. RR /\ 0 e. RR ) -> <. 0 , 0 >. e. ( RR X. RR ) ) |
| 19 |
17 17 18
|
mp2an |
|- <. 0 , 0 >. e. ( RR X. RR ) |
| 20 |
16 19
|
elini |
|- <. 0 , 0 >. e. ( <_ i^i ( RR X. RR ) ) |
| 21 |
|
ifcl |
|- ( ( <. A , B >. e. ( <_ i^i ( RR X. RR ) ) /\ <. 0 , 0 >. e. ( <_ i^i ( RR X. RR ) ) ) -> if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 22 |
13 20 21
|
sylancl |
|- ( ( ph /\ n e. NN ) -> if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 23 |
22 4
|
fmptd |
|- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 24 |
|
eqid |
|- ( ( abs o. - ) o. G ) = ( ( abs o. - ) o. G ) |
| 25 |
|
eqid |
|- seq 1 ( + , ( ( abs o. - ) o. G ) ) = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
| 26 |
24 25
|
ovolsf |
|- ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> seq 1 ( + , ( ( abs o. - ) o. G ) ) : NN --> ( 0 [,) +oo ) ) |
| 27 |
23 26
|
syl |
|- ( ph -> seq 1 ( + , ( ( abs o. - ) o. G ) ) : NN --> ( 0 [,) +oo ) ) |
| 28 |
27
|
frnd |
|- ( ph -> ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ ( 0 [,) +oo ) ) |
| 29 |
|
icossxr |
|- ( 0 [,) +oo ) C_ RR* |
| 30 |
28 29
|
sstrdi |
|- ( ph -> ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ RR* ) |
| 31 |
|
supxrcl |
|- ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ RR* -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) e. RR* ) |
| 32 |
30 31
|
syl |
|- ( ph -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) e. RR* ) |
| 33 |
2 1
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
| 34 |
33
|
rexrd |
|- ( ph -> ( B - A ) e. RR* ) |
| 35 |
|
1nn |
|- 1 e. NN |
| 36 |
35
|
a1i |
|- ( ( ph /\ x e. ( A [,] B ) ) -> 1 e. NN ) |
| 37 |
|
op1stg |
|- ( ( A e. RR /\ B e. RR ) -> ( 1st ` <. A , B >. ) = A ) |
| 38 |
1 2 37
|
syl2anc |
|- ( ph -> ( 1st ` <. A , B >. ) = A ) |
| 39 |
38
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( 1st ` <. A , B >. ) = A ) |
| 40 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
| 41 |
1 2 40
|
syl2anc |
|- ( ph -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
| 42 |
41
|
biimpa |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( x e. RR /\ A <_ x /\ x <_ B ) ) |
| 43 |
42
|
simp2d |
|- ( ( ph /\ x e. ( A [,] B ) ) -> A <_ x ) |
| 44 |
39 43
|
eqbrtrd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( 1st ` <. A , B >. ) <_ x ) |
| 45 |
42
|
simp3d |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x <_ B ) |
| 46 |
|
op2ndg |
|- ( ( A e. RR /\ B e. RR ) -> ( 2nd ` <. A , B >. ) = B ) |
| 47 |
1 2 46
|
syl2anc |
|- ( ph -> ( 2nd ` <. A , B >. ) = B ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( 2nd ` <. A , B >. ) = B ) |
| 49 |
45 48
|
breqtrrd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x <_ ( 2nd ` <. A , B >. ) ) |
| 50 |
|
fveq2 |
|- ( n = 1 -> ( G ` n ) = ( G ` 1 ) ) |
| 51 |
|
iftrue |
|- ( n = 1 -> if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) = <. A , B >. ) |
| 52 |
|
opex |
|- <. A , B >. e. _V |
| 53 |
51 4 52
|
fvmpt |
|- ( 1 e. NN -> ( G ` 1 ) = <. A , B >. ) |
| 54 |
35 53
|
ax-mp |
|- ( G ` 1 ) = <. A , B >. |
| 55 |
50 54
|
eqtrdi |
|- ( n = 1 -> ( G ` n ) = <. A , B >. ) |
| 56 |
55
|
fveq2d |
|- ( n = 1 -> ( 1st ` ( G ` n ) ) = ( 1st ` <. A , B >. ) ) |
| 57 |
56
|
breq1d |
|- ( n = 1 -> ( ( 1st ` ( G ` n ) ) <_ x <-> ( 1st ` <. A , B >. ) <_ x ) ) |
| 58 |
55
|
fveq2d |
|- ( n = 1 -> ( 2nd ` ( G ` n ) ) = ( 2nd ` <. A , B >. ) ) |
| 59 |
58
|
breq2d |
|- ( n = 1 -> ( x <_ ( 2nd ` ( G ` n ) ) <-> x <_ ( 2nd ` <. A , B >. ) ) ) |
| 60 |
57 59
|
anbi12d |
|- ( n = 1 -> ( ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) <-> ( ( 1st ` <. A , B >. ) <_ x /\ x <_ ( 2nd ` <. A , B >. ) ) ) ) |
| 61 |
60
|
rspcev |
|- ( ( 1 e. NN /\ ( ( 1st ` <. A , B >. ) <_ x /\ x <_ ( 2nd ` <. A , B >. ) ) ) -> E. n e. NN ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) ) |
| 62 |
36 44 49 61
|
syl12anc |
|- ( ( ph /\ x e. ( A [,] B ) ) -> E. n e. NN ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) ) |
| 63 |
62
|
ralrimiva |
|- ( ph -> A. x e. ( A [,] B ) E. n e. NN ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) ) |
| 64 |
|
ovolficc |
|- ( ( ( A [,] B ) C_ RR /\ G : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( ( A [,] B ) C_ U. ran ( [,] o. G ) <-> A. x e. ( A [,] B ) E. n e. NN ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) ) ) |
| 65 |
6 23 64
|
syl2anc |
|- ( ph -> ( ( A [,] B ) C_ U. ran ( [,] o. G ) <-> A. x e. ( A [,] B ) E. n e. NN ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) ) ) |
| 66 |
63 65
|
mpbird |
|- ( ph -> ( A [,] B ) C_ U. ran ( [,] o. G ) ) |
| 67 |
25
|
ovollb2 |
|- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( A [,] B ) C_ U. ran ( [,] o. G ) ) -> ( vol* ` ( A [,] B ) ) <_ sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) ) |
| 68 |
23 66 67
|
syl2anc |
|- ( ph -> ( vol* ` ( A [,] B ) ) <_ sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) ) |
| 69 |
|
addrid |
|- ( k e. CC -> ( k + 0 ) = k ) |
| 70 |
69
|
adantl |
|- ( ( ( ph /\ x e. NN ) /\ k e. CC ) -> ( k + 0 ) = k ) |
| 71 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 72 |
35 71
|
eleqtri |
|- 1 e. ( ZZ>= ` 1 ) |
| 73 |
72
|
a1i |
|- ( ( ph /\ x e. NN ) -> 1 e. ( ZZ>= ` 1 ) ) |
| 74 |
|
simpr |
|- ( ( ph /\ x e. NN ) -> x e. NN ) |
| 75 |
74 71
|
eleqtrdi |
|- ( ( ph /\ x e. NN ) -> x e. ( ZZ>= ` 1 ) ) |
| 76 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 77 |
27
|
adantr |
|- ( ( ph /\ x e. NN ) -> seq 1 ( + , ( ( abs o. - ) o. G ) ) : NN --> ( 0 [,) +oo ) ) |
| 78 |
|
ffvelcdm |
|- ( ( seq 1 ( + , ( ( abs o. - ) o. G ) ) : NN --> ( 0 [,) +oo ) /\ 1 e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) e. ( 0 [,) +oo ) ) |
| 79 |
77 35 78
|
sylancl |
|- ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) e. ( 0 [,) +oo ) ) |
| 80 |
76 79
|
sselid |
|- ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) e. RR ) |
| 81 |
80
|
recnd |
|- ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) e. CC ) |
| 82 |
23
|
ad2antrr |
|- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 83 |
|
elfzuz |
|- ( k e. ( ( 1 + 1 ) ... x ) -> k e. ( ZZ>= ` ( 1 + 1 ) ) ) |
| 84 |
83
|
adantl |
|- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> k e. ( ZZ>= ` ( 1 + 1 ) ) ) |
| 85 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 86 |
85
|
fveq2i |
|- ( ZZ>= ` 2 ) = ( ZZ>= ` ( 1 + 1 ) ) |
| 87 |
84 86
|
eleqtrrdi |
|- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> k e. ( ZZ>= ` 2 ) ) |
| 88 |
|
eluz2nn |
|- ( k e. ( ZZ>= ` 2 ) -> k e. NN ) |
| 89 |
87 88
|
syl |
|- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> k e. NN ) |
| 90 |
24
|
ovolfsval |
|- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ k e. NN ) -> ( ( ( abs o. - ) o. G ) ` k ) = ( ( 2nd ` ( G ` k ) ) - ( 1st ` ( G ` k ) ) ) ) |
| 91 |
82 89 90
|
syl2anc |
|- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( ( ( abs o. - ) o. G ) ` k ) = ( ( 2nd ` ( G ` k ) ) - ( 1st ` ( G ` k ) ) ) ) |
| 92 |
|
eqeq1 |
|- ( n = k -> ( n = 1 <-> k = 1 ) ) |
| 93 |
92
|
ifbid |
|- ( n = k -> if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) = if ( k = 1 , <. A , B >. , <. 0 , 0 >. ) ) |
| 94 |
|
opex |
|- <. 0 , 0 >. e. _V |
| 95 |
52 94
|
ifex |
|- if ( k = 1 , <. A , B >. , <. 0 , 0 >. ) e. _V |
| 96 |
93 4 95
|
fvmpt |
|- ( k e. NN -> ( G ` k ) = if ( k = 1 , <. A , B >. , <. 0 , 0 >. ) ) |
| 97 |
89 96
|
syl |
|- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( G ` k ) = if ( k = 1 , <. A , B >. , <. 0 , 0 >. ) ) |
| 98 |
|
eluz2b3 |
|- ( k e. ( ZZ>= ` 2 ) <-> ( k e. NN /\ k =/= 1 ) ) |
| 99 |
98
|
simprbi |
|- ( k e. ( ZZ>= ` 2 ) -> k =/= 1 ) |
| 100 |
87 99
|
syl |
|- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> k =/= 1 ) |
| 101 |
100
|
neneqd |
|- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> -. k = 1 ) |
| 102 |
101
|
iffalsed |
|- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> if ( k = 1 , <. A , B >. , <. 0 , 0 >. ) = <. 0 , 0 >. ) |
| 103 |
97 102
|
eqtrd |
|- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( G ` k ) = <. 0 , 0 >. ) |
| 104 |
103
|
fveq2d |
|- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( 2nd ` ( G ` k ) ) = ( 2nd ` <. 0 , 0 >. ) ) |
| 105 |
|
c0ex |
|- 0 e. _V |
| 106 |
105 105
|
op2nd |
|- ( 2nd ` <. 0 , 0 >. ) = 0 |
| 107 |
104 106
|
eqtrdi |
|- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( 2nd ` ( G ` k ) ) = 0 ) |
| 108 |
103
|
fveq2d |
|- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( 1st ` ( G ` k ) ) = ( 1st ` <. 0 , 0 >. ) ) |
| 109 |
105 105
|
op1st |
|- ( 1st ` <. 0 , 0 >. ) = 0 |
| 110 |
108 109
|
eqtrdi |
|- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( 1st ` ( G ` k ) ) = 0 ) |
| 111 |
107 110
|
oveq12d |
|- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( ( 2nd ` ( G ` k ) ) - ( 1st ` ( G ` k ) ) ) = ( 0 - 0 ) ) |
| 112 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
| 113 |
111 112
|
eqtrdi |
|- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( ( 2nd ` ( G ` k ) ) - ( 1st ` ( G ` k ) ) ) = 0 ) |
| 114 |
91 113
|
eqtrd |
|- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( ( ( abs o. - ) o. G ) ` k ) = 0 ) |
| 115 |
70 73 75 81 114
|
seqid2 |
|- ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) ) |
| 116 |
|
1z |
|- 1 e. ZZ |
| 117 |
23
|
adantr |
|- ( ( ph /\ x e. NN ) -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 118 |
24
|
ovolfsval |
|- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ 1 e. NN ) -> ( ( ( abs o. - ) o. G ) ` 1 ) = ( ( 2nd ` ( G ` 1 ) ) - ( 1st ` ( G ` 1 ) ) ) ) |
| 119 |
117 35 118
|
sylancl |
|- ( ( ph /\ x e. NN ) -> ( ( ( abs o. - ) o. G ) ` 1 ) = ( ( 2nd ` ( G ` 1 ) ) - ( 1st ` ( G ` 1 ) ) ) ) |
| 120 |
54
|
fveq2i |
|- ( 2nd ` ( G ` 1 ) ) = ( 2nd ` <. A , B >. ) |
| 121 |
47
|
adantr |
|- ( ( ph /\ x e. NN ) -> ( 2nd ` <. A , B >. ) = B ) |
| 122 |
120 121
|
eqtrid |
|- ( ( ph /\ x e. NN ) -> ( 2nd ` ( G ` 1 ) ) = B ) |
| 123 |
54
|
fveq2i |
|- ( 1st ` ( G ` 1 ) ) = ( 1st ` <. A , B >. ) |
| 124 |
38
|
adantr |
|- ( ( ph /\ x e. NN ) -> ( 1st ` <. A , B >. ) = A ) |
| 125 |
123 124
|
eqtrid |
|- ( ( ph /\ x e. NN ) -> ( 1st ` ( G ` 1 ) ) = A ) |
| 126 |
122 125
|
oveq12d |
|- ( ( ph /\ x e. NN ) -> ( ( 2nd ` ( G ` 1 ) ) - ( 1st ` ( G ` 1 ) ) ) = ( B - A ) ) |
| 127 |
119 126
|
eqtrd |
|- ( ( ph /\ x e. NN ) -> ( ( ( abs o. - ) o. G ) ` 1 ) = ( B - A ) ) |
| 128 |
116 127
|
seq1i |
|- ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) = ( B - A ) ) |
| 129 |
115 128
|
eqtr3d |
|- ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) = ( B - A ) ) |
| 130 |
33
|
leidd |
|- ( ph -> ( B - A ) <_ ( B - A ) ) |
| 131 |
130
|
adantr |
|- ( ( ph /\ x e. NN ) -> ( B - A ) <_ ( B - A ) ) |
| 132 |
129 131
|
eqbrtrd |
|- ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) <_ ( B - A ) ) |
| 133 |
132
|
ralrimiva |
|- ( ph -> A. x e. NN ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) <_ ( B - A ) ) |
| 134 |
27
|
ffnd |
|- ( ph -> seq 1 ( + , ( ( abs o. - ) o. G ) ) Fn NN ) |
| 135 |
|
breq1 |
|- ( z = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) -> ( z <_ ( B - A ) <-> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) <_ ( B - A ) ) ) |
| 136 |
135
|
ralrn |
|- ( seq 1 ( + , ( ( abs o. - ) o. G ) ) Fn NN -> ( A. z e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) z <_ ( B - A ) <-> A. x e. NN ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) <_ ( B - A ) ) ) |
| 137 |
134 136
|
syl |
|- ( ph -> ( A. z e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) z <_ ( B - A ) <-> A. x e. NN ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) <_ ( B - A ) ) ) |
| 138 |
133 137
|
mpbird |
|- ( ph -> A. z e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) z <_ ( B - A ) ) |
| 139 |
|
supxrleub |
|- ( ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ RR* /\ ( B - A ) e. RR* ) -> ( sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) <_ ( B - A ) <-> A. z e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) z <_ ( B - A ) ) ) |
| 140 |
30 34 139
|
syl2anc |
|- ( ph -> ( sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) <_ ( B - A ) <-> A. z e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) z <_ ( B - A ) ) ) |
| 141 |
138 140
|
mpbird |
|- ( ph -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) <_ ( B - A ) ) |
| 142 |
8 32 34 68 141
|
xrletrd |
|- ( ph -> ( vol* ` ( A [,] B ) ) <_ ( B - A ) ) |