| Step |
Hyp |
Ref |
Expression |
| 1 |
|
utoptop.1 |
|- J = ( unifTop ` U ) |
| 2 |
|
utoptop |
|- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) e. Top ) |
| 3 |
1 2
|
eqeltrid |
|- ( U e. ( UnifOn ` X ) -> J e. Top ) |
| 4 |
|
txtop |
|- ( ( J e. Top /\ J e. Top ) -> ( J tX J ) e. Top ) |
| 5 |
3 3 4
|
syl2anc |
|- ( U e. ( UnifOn ` X ) -> ( J tX J ) e. Top ) |
| 6 |
5
|
3ad2ant1 |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( J tX J ) e. Top ) |
| 7 |
6
|
adantr |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M = (/) ) -> ( J tX J ) e. Top ) |
| 8 |
|
0nei |
|- ( ( J tX J ) e. Top -> (/) e. ( ( nei ` ( J tX J ) ) ` (/) ) ) |
| 9 |
7 8
|
syl |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M = (/) ) -> (/) e. ( ( nei ` ( J tX J ) ) ` (/) ) ) |
| 10 |
|
coeq1 |
|- ( M = (/) -> ( M o. V ) = ( (/) o. V ) ) |
| 11 |
|
co01 |
|- ( (/) o. V ) = (/) |
| 12 |
10 11
|
eqtrdi |
|- ( M = (/) -> ( M o. V ) = (/) ) |
| 13 |
12
|
coeq2d |
|- ( M = (/) -> ( V o. ( M o. V ) ) = ( V o. (/) ) ) |
| 14 |
|
co02 |
|- ( V o. (/) ) = (/) |
| 15 |
13 14
|
eqtrdi |
|- ( M = (/) -> ( V o. ( M o. V ) ) = (/) ) |
| 16 |
15
|
adantl |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M = (/) ) -> ( V o. ( M o. V ) ) = (/) ) |
| 17 |
|
simpr |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M = (/) ) -> M = (/) ) |
| 18 |
17
|
fveq2d |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M = (/) ) -> ( ( nei ` ( J tX J ) ) ` M ) = ( ( nei ` ( J tX J ) ) ` (/) ) ) |
| 19 |
9 16 18
|
3eltr4d |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M = (/) ) -> ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` M ) ) |
| 20 |
6
|
adantr |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( J tX J ) e. Top ) |
| 21 |
|
simpl1 |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> U e. ( UnifOn ` X ) ) |
| 22 |
21 3
|
syl |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> J e. Top ) |
| 23 |
|
simpl2l |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> V e. U ) |
| 24 |
|
simp3 |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> M C_ ( X X. X ) ) |
| 25 |
24
|
sselda |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> r e. ( X X. X ) ) |
| 26 |
|
xp1st |
|- ( r e. ( X X. X ) -> ( 1st ` r ) e. X ) |
| 27 |
25 26
|
syl |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( 1st ` r ) e. X ) |
| 28 |
1
|
utopsnnei |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ ( 1st ` r ) e. X ) -> ( V " { ( 1st ` r ) } ) e. ( ( nei ` J ) ` { ( 1st ` r ) } ) ) |
| 29 |
21 23 27 28
|
syl3anc |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( V " { ( 1st ` r ) } ) e. ( ( nei ` J ) ` { ( 1st ` r ) } ) ) |
| 30 |
|
xp2nd |
|- ( r e. ( X X. X ) -> ( 2nd ` r ) e. X ) |
| 31 |
25 30
|
syl |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( 2nd ` r ) e. X ) |
| 32 |
1
|
utopsnnei |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ ( 2nd ` r ) e. X ) -> ( V " { ( 2nd ` r ) } ) e. ( ( nei ` J ) ` { ( 2nd ` r ) } ) ) |
| 33 |
21 23 31 32
|
syl3anc |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( V " { ( 2nd ` r ) } ) e. ( ( nei ` J ) ` { ( 2nd ` r ) } ) ) |
| 34 |
|
eqid |
|- U. J = U. J |
| 35 |
34 34
|
neitx |
|- ( ( ( J e. Top /\ J e. Top ) /\ ( ( V " { ( 1st ` r ) } ) e. ( ( nei ` J ) ` { ( 1st ` r ) } ) /\ ( V " { ( 2nd ` r ) } ) e. ( ( nei ` J ) ` { ( 2nd ` r ) } ) ) ) -> ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) e. ( ( nei ` ( J tX J ) ) ` ( { ( 1st ` r ) } X. { ( 2nd ` r ) } ) ) ) |
| 36 |
22 22 29 33 35
|
syl22anc |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) e. ( ( nei ` ( J tX J ) ) ` ( { ( 1st ` r ) } X. { ( 2nd ` r ) } ) ) ) |
| 37 |
|
fvex |
|- ( 1st ` r ) e. _V |
| 38 |
|
fvex |
|- ( 2nd ` r ) e. _V |
| 39 |
37 38
|
xpsn |
|- ( { ( 1st ` r ) } X. { ( 2nd ` r ) } ) = { <. ( 1st ` r ) , ( 2nd ` r ) >. } |
| 40 |
39
|
fveq2i |
|- ( ( nei ` ( J tX J ) ) ` ( { ( 1st ` r ) } X. { ( 2nd ` r ) } ) ) = ( ( nei ` ( J tX J ) ) ` { <. ( 1st ` r ) , ( 2nd ` r ) >. } ) |
| 41 |
36 40
|
eleqtrdi |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) e. ( ( nei ` ( J tX J ) ) ` { <. ( 1st ` r ) , ( 2nd ` r ) >. } ) ) |
| 42 |
24
|
adantr |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> M C_ ( X X. X ) ) |
| 43 |
|
xpss |
|- ( X X. X ) C_ ( _V X. _V ) |
| 44 |
|
sstr |
|- ( ( M C_ ( X X. X ) /\ ( X X. X ) C_ ( _V X. _V ) ) -> M C_ ( _V X. _V ) ) |
| 45 |
43 44
|
mpan2 |
|- ( M C_ ( X X. X ) -> M C_ ( _V X. _V ) ) |
| 46 |
|
df-rel |
|- ( Rel M <-> M C_ ( _V X. _V ) ) |
| 47 |
45 46
|
sylibr |
|- ( M C_ ( X X. X ) -> Rel M ) |
| 48 |
42 47
|
syl |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> Rel M ) |
| 49 |
|
1st2nd |
|- ( ( Rel M /\ r e. M ) -> r = <. ( 1st ` r ) , ( 2nd ` r ) >. ) |
| 50 |
48 49
|
sylancom |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> r = <. ( 1st ` r ) , ( 2nd ` r ) >. ) |
| 51 |
50
|
sneqd |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> { r } = { <. ( 1st ` r ) , ( 2nd ` r ) >. } ) |
| 52 |
51
|
fveq2d |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( ( nei ` ( J tX J ) ) ` { r } ) = ( ( nei ` ( J tX J ) ) ` { <. ( 1st ` r ) , ( 2nd ` r ) >. } ) ) |
| 53 |
41 52
|
eleqtrrd |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) |
| 54 |
|
relxp |
|- Rel ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) |
| 55 |
54
|
a1i |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> Rel ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) |
| 56 |
|
1st2nd |
|- ( ( Rel ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 57 |
55 56
|
sylancom |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 58 |
|
simpll2 |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( V e. U /\ `' V = V ) ) |
| 59 |
58
|
simprd |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> `' V = V ) |
| 60 |
|
simpll1 |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> U e. ( UnifOn ` X ) ) |
| 61 |
58
|
simpld |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> V e. U ) |
| 62 |
|
ustrel |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> Rel V ) |
| 63 |
60 61 62
|
syl2anc |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> Rel V ) |
| 64 |
|
xp1st |
|- ( z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) -> ( 1st ` z ) e. ( V " { ( 1st ` r ) } ) ) |
| 65 |
64
|
adantl |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( 1st ` z ) e. ( V " { ( 1st ` r ) } ) ) |
| 66 |
|
elrelimasn |
|- ( Rel V -> ( ( 1st ` z ) e. ( V " { ( 1st ` r ) } ) <-> ( 1st ` r ) V ( 1st ` z ) ) ) |
| 67 |
66
|
biimpa |
|- ( ( Rel V /\ ( 1st ` z ) e. ( V " { ( 1st ` r ) } ) ) -> ( 1st ` r ) V ( 1st ` z ) ) |
| 68 |
63 65 67
|
syl2anc |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( 1st ` r ) V ( 1st ` z ) ) |
| 69 |
|
fvex |
|- ( 1st ` z ) e. _V |
| 70 |
37 69
|
brcnv |
|- ( ( 1st ` r ) `' V ( 1st ` z ) <-> ( 1st ` z ) V ( 1st ` r ) ) |
| 71 |
|
breq |
|- ( `' V = V -> ( ( 1st ` r ) `' V ( 1st ` z ) <-> ( 1st ` r ) V ( 1st ` z ) ) ) |
| 72 |
70 71
|
bitr3id |
|- ( `' V = V -> ( ( 1st ` z ) V ( 1st ` r ) <-> ( 1st ` r ) V ( 1st ` z ) ) ) |
| 73 |
72
|
biimpar |
|- ( ( `' V = V /\ ( 1st ` r ) V ( 1st ` z ) ) -> ( 1st ` z ) V ( 1st ` r ) ) |
| 74 |
59 68 73
|
syl2anc |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( 1st ` z ) V ( 1st ` r ) ) |
| 75 |
|
simpll3 |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> M C_ ( X X. X ) ) |
| 76 |
|
simplr |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> r e. M ) |
| 77 |
|
1st2ndbr |
|- ( ( Rel M /\ r e. M ) -> ( 1st ` r ) M ( 2nd ` r ) ) |
| 78 |
47 77
|
sylan |
|- ( ( M C_ ( X X. X ) /\ r e. M ) -> ( 1st ` r ) M ( 2nd ` r ) ) |
| 79 |
75 76 78
|
syl2anc |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( 1st ` r ) M ( 2nd ` r ) ) |
| 80 |
|
xp2nd |
|- ( z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) -> ( 2nd ` z ) e. ( V " { ( 2nd ` r ) } ) ) |
| 81 |
80
|
adantl |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( 2nd ` z ) e. ( V " { ( 2nd ` r ) } ) ) |
| 82 |
|
elrelimasn |
|- ( Rel V -> ( ( 2nd ` z ) e. ( V " { ( 2nd ` r ) } ) <-> ( 2nd ` r ) V ( 2nd ` z ) ) ) |
| 83 |
82
|
biimpa |
|- ( ( Rel V /\ ( 2nd ` z ) e. ( V " { ( 2nd ` r ) } ) ) -> ( 2nd ` r ) V ( 2nd ` z ) ) |
| 84 |
63 81 83
|
syl2anc |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( 2nd ` r ) V ( 2nd ` z ) ) |
| 85 |
69 38 37
|
3pm3.2i |
|- ( ( 1st ` z ) e. _V /\ ( 2nd ` r ) e. _V /\ ( 1st ` r ) e. _V ) |
| 86 |
|
brcogw |
|- ( ( ( ( 1st ` z ) e. _V /\ ( 2nd ` r ) e. _V /\ ( 1st ` r ) e. _V ) /\ ( ( 1st ` z ) V ( 1st ` r ) /\ ( 1st ` r ) M ( 2nd ` r ) ) ) -> ( 1st ` z ) ( M o. V ) ( 2nd ` r ) ) |
| 87 |
85 86
|
mpan |
|- ( ( ( 1st ` z ) V ( 1st ` r ) /\ ( 1st ` r ) M ( 2nd ` r ) ) -> ( 1st ` z ) ( M o. V ) ( 2nd ` r ) ) |
| 88 |
|
fvex |
|- ( 2nd ` z ) e. _V |
| 89 |
69 88 38
|
3pm3.2i |
|- ( ( 1st ` z ) e. _V /\ ( 2nd ` z ) e. _V /\ ( 2nd ` r ) e. _V ) |
| 90 |
|
brcogw |
|- ( ( ( ( 1st ` z ) e. _V /\ ( 2nd ` z ) e. _V /\ ( 2nd ` r ) e. _V ) /\ ( ( 1st ` z ) ( M o. V ) ( 2nd ` r ) /\ ( 2nd ` r ) V ( 2nd ` z ) ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
| 91 |
89 90
|
mpan |
|- ( ( ( 1st ` z ) ( M o. V ) ( 2nd ` r ) /\ ( 2nd ` r ) V ( 2nd ` z ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
| 92 |
87 91
|
sylan |
|- ( ( ( ( 1st ` z ) V ( 1st ` r ) /\ ( 1st ` r ) M ( 2nd ` r ) ) /\ ( 2nd ` r ) V ( 2nd ` z ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
| 93 |
74 79 84 92
|
syl21anc |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
| 94 |
|
df-br |
|- ( ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) <-> <. ( 1st ` z ) , ( 2nd ` z ) >. e. ( V o. ( M o. V ) ) ) |
| 95 |
93 94
|
sylib |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> <. ( 1st ` z ) , ( 2nd ` z ) >. e. ( V o. ( M o. V ) ) ) |
| 96 |
57 95
|
eqeltrd |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> z e. ( V o. ( M o. V ) ) ) |
| 97 |
96
|
ex |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) -> z e. ( V o. ( M o. V ) ) ) ) |
| 98 |
97
|
ssrdv |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) C_ ( V o. ( M o. V ) ) ) |
| 99 |
|
simp1 |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> U e. ( UnifOn ` X ) ) |
| 100 |
|
simp2l |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> V e. U ) |
| 101 |
|
ustssxp |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> V C_ ( X X. X ) ) |
| 102 |
99 100 101
|
syl2anc |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> V C_ ( X X. X ) ) |
| 103 |
|
coss1 |
|- ( V C_ ( X X. X ) -> ( V o. ( M o. V ) ) C_ ( ( X X. X ) o. ( M o. V ) ) ) |
| 104 |
102 103
|
syl |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( V o. ( M o. V ) ) C_ ( ( X X. X ) o. ( M o. V ) ) ) |
| 105 |
|
coss1 |
|- ( M C_ ( X X. X ) -> ( M o. V ) C_ ( ( X X. X ) o. V ) ) |
| 106 |
24 105
|
syl |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( M o. V ) C_ ( ( X X. X ) o. V ) ) |
| 107 |
|
coss2 |
|- ( V C_ ( X X. X ) -> ( ( X X. X ) o. V ) C_ ( ( X X. X ) o. ( X X. X ) ) ) |
| 108 |
|
xpcoid |
|- ( ( X X. X ) o. ( X X. X ) ) = ( X X. X ) |
| 109 |
107 108
|
sseqtrdi |
|- ( V C_ ( X X. X ) -> ( ( X X. X ) o. V ) C_ ( X X. X ) ) |
| 110 |
102 109
|
syl |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( ( X X. X ) o. V ) C_ ( X X. X ) ) |
| 111 |
106 110
|
sstrd |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( M o. V ) C_ ( X X. X ) ) |
| 112 |
|
coss2 |
|- ( ( M o. V ) C_ ( X X. X ) -> ( ( X X. X ) o. ( M o. V ) ) C_ ( ( X X. X ) o. ( X X. X ) ) ) |
| 113 |
112 108
|
sseqtrdi |
|- ( ( M o. V ) C_ ( X X. X ) -> ( ( X X. X ) o. ( M o. V ) ) C_ ( X X. X ) ) |
| 114 |
111 113
|
syl |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( ( X X. X ) o. ( M o. V ) ) C_ ( X X. X ) ) |
| 115 |
104 114
|
sstrd |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( V o. ( M o. V ) ) C_ ( X X. X ) ) |
| 116 |
|
utopbas |
|- ( U e. ( UnifOn ` X ) -> X = U. ( unifTop ` U ) ) |
| 117 |
1
|
unieqi |
|- U. J = U. ( unifTop ` U ) |
| 118 |
116 117
|
eqtr4di |
|- ( U e. ( UnifOn ` X ) -> X = U. J ) |
| 119 |
118
|
sqxpeqd |
|- ( U e. ( UnifOn ` X ) -> ( X X. X ) = ( U. J X. U. J ) ) |
| 120 |
34 34
|
txuni |
|- ( ( J e. Top /\ J e. Top ) -> ( U. J X. U. J ) = U. ( J tX J ) ) |
| 121 |
3 3 120
|
syl2anc |
|- ( U e. ( UnifOn ` X ) -> ( U. J X. U. J ) = U. ( J tX J ) ) |
| 122 |
119 121
|
eqtrd |
|- ( U e. ( UnifOn ` X ) -> ( X X. X ) = U. ( J tX J ) ) |
| 123 |
122
|
3ad2ant1 |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( X X. X ) = U. ( J tX J ) ) |
| 124 |
115 123
|
sseqtrd |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( V o. ( M o. V ) ) C_ U. ( J tX J ) ) |
| 125 |
124
|
adantr |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( V o. ( M o. V ) ) C_ U. ( J tX J ) ) |
| 126 |
|
eqid |
|- U. ( J tX J ) = U. ( J tX J ) |
| 127 |
126
|
ssnei2 |
|- ( ( ( ( J tX J ) e. Top /\ ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) /\ ( ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) C_ ( V o. ( M o. V ) ) /\ ( V o. ( M o. V ) ) C_ U. ( J tX J ) ) ) -> ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) |
| 128 |
20 53 98 125 127
|
syl22anc |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) |
| 129 |
128
|
ralrimiva |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> A. r e. M ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) |
| 130 |
129
|
adantr |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M =/= (/) ) -> A. r e. M ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) |
| 131 |
6
|
adantr |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M =/= (/) ) -> ( J tX J ) e. Top ) |
| 132 |
24 123
|
sseqtrd |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> M C_ U. ( J tX J ) ) |
| 133 |
132
|
adantr |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M =/= (/) ) -> M C_ U. ( J tX J ) ) |
| 134 |
|
simpr |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M =/= (/) ) -> M =/= (/) ) |
| 135 |
126
|
neips |
|- ( ( ( J tX J ) e. Top /\ M C_ U. ( J tX J ) /\ M =/= (/) ) -> ( ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` M ) <-> A. r e. M ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) ) |
| 136 |
131 133 134 135
|
syl3anc |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M =/= (/) ) -> ( ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` M ) <-> A. r e. M ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) ) |
| 137 |
130 136
|
mpbird |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M =/= (/) ) -> ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` M ) ) |
| 138 |
19 137
|
pm2.61dane |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` M ) ) |