Metamath Proof Explorer


Theorem 1smat1

Description: The submatrix of the identity matrix obtained by removing the ith row and the ith column is an identity matrix. Cf. 1marepvsma1 . (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Hypotheses 1smat1.1 1˙=11NMatR
1smat1.r φRRing
1smat1.n φN
1smat1.i φI1N
Assertion 1smat1 φIsubMat11˙I=11N1MatR

Proof

Step Hyp Ref Expression
1 1smat1.1 1˙=11NMatR
2 1smat1.r φRRing
3 1smat1.n φN
4 1smat1.i φI1N
5 eqid IsubMat11˙I=IsubMat11˙I
6 3 adantr φi1N1j1N1N
7 4 adantr φi1N1j1N1I1N
8 fzfi 1NFin
9 eqid 1NMatR=1NMatR
10 eqid Base1NMatR=Base1NMatR
11 9 10 1 mat1bas RRing1NFin1˙Base1NMatR
12 2 8 11 sylancl φ1˙Base1NMatR
13 eqid BaseR=BaseR
14 9 13 matbas2 1NFinRRingBaseR1N×1N=Base1NMatR
15 8 2 14 sylancr φBaseR1N×1N=Base1NMatR
16 12 15 eleqtrrd φ1˙BaseR1N×1N
17 16 adantr φi1N1j1N11˙BaseR1N×1N
18 fz1ssnn 1N1
19 simprl φi1N1j1N1i1N1
20 18 19 sselid φi1N1j1N1i
21 simprr φi1N1j1N1j1N1
22 18 21 sselid φi1N1j1N1j
23 eqidd φi1N1j1N1ifi<Iii+1=ifi<Iii+1
24 eqidd φi1N1j1N1ifj<Ijj+1=ifj<Ijj+1
25 5 6 6 7 7 17 20 22 23 24 smatlem φi1N1j1N1iIsubMat11˙Ij=ifi<Iii+11˙ifj<Ijj+1
26 eqid 1R=1R
27 eqid 0R=0R
28 8 a1i φi1N1j1N11NFin
29 2 adantr φi1N1j1N1RRing
30 nnuz =1
31 20 30 eleqtrdi φi1N1j1N1i1
32 fznatpl1 Ni1N1i+11N
33 6 19 32 syl2anc φi1N1j1N1i+11N
34 peano2fzr i1i+11Ni1N
35 31 33 34 syl2anc φi1N1j1N1i1N
36 35 33 jca φi1N1j1N1i1Ni+11N
37 eleq1 i=ifi<Iii+1i1Nifi<Iii+11N
38 eleq1 i+1=ifi<Iii+1i+11Nifi<Iii+11N
39 37 38 ifboth i1Ni+11Nifi<Iii+11N
40 36 39 syl φi1N1j1N1ifi<Iii+11N
41 22 30 eleqtrdi φi1N1j1N1j1
42 fznatpl1 Nj1N1j+11N
43 6 21 42 syl2anc φi1N1j1N1j+11N
44 peano2fzr j1j+11Nj1N
45 41 43 44 syl2anc φi1N1j1N1j1N
46 45 43 jca φi1N1j1N1j1Nj+11N
47 eleq1 j=ifj<Ijj+1j1Nifj<Ijj+11N
48 eleq1 j+1=ifj<Ijj+1j+11Nifj<Ijj+11N
49 47 48 ifboth j1Nj+11Nifj<Ijj+11N
50 46 49 syl φi1N1j1N1ifj<Ijj+11N
51 9 26 27 28 29 40 50 1 mat1ov φi1N1j1N1ifi<Iii+11˙ifj<Ijj+1=ififi<Iii+1=ifj<Ijj+11R0R
52 simpr φi1N1j1N1i<Ii<I
53 52 iftrued φi1N1j1N1i<Iifi<Iii+1=i
54 53 eqeq1d φi1N1j1N1i<Iifi<Iii+1=ifj<Ijj+1i=ifj<Ijj+1
55 simpr φi1N1j1N1i<Ij<Ij<I
56 55 iftrued φi1N1j1N1i<Ij<Iifj<Ijj+1=j
57 56 eqeq2d φi1N1j1N1i<Ij<Ii=ifj<Ijj+1i=j
58 simpr φi1N1j1N1i<I¬j<I¬j<I
59 58 iffalsed φi1N1j1N1i<I¬j<Iifj<Ijj+1=j+1
60 59 eqeq2d φi1N1j1N1i<I¬j<Ii=ifj<Ijj+1i=j+1
61 20 nnred φi1N1j1N1i
62 61 ad2antrr φi1N1j1N1i<I¬j<Ii
63 fz1ssnn 1N
64 63 4 sselid φI
65 64 nnred φI
66 65 ad3antrrr φi1N1j1N1i<I¬j<II
67 22 nnred φi1N1j1N1j
68 67 ad2antrr φi1N1j1N1i<I¬j<Ij
69 1red φi1N1j1N1i<I¬j<I1
70 68 69 readdcld φi1N1j1N1i<I¬j<Ij+1
71 52 adantr φi1N1j1N1i<I¬j<Ii<I
72 64 nnzd φI
73 72 ad3antrrr φi1N1j1N1i<I¬j<II
74 22 nnzd φi1N1j1N1j
75 74 ad2antrr φi1N1j1N1i<I¬j<Ij
76 66 68 58 nltled φi1N1j1N1i<I¬j<IIj
77 zleltp1 IjIjI<j+1
78 77 biimpa IjIjI<j+1
79 73 75 76 78 syl21anc φi1N1j1N1i<I¬j<II<j+1
80 62 66 70 71 79 lttrd φi1N1j1N1i<I¬j<Ii<j+1
81 62 80 ltned φi1N1j1N1i<I¬j<Iij+1
82 81 neneqd φi1N1j1N1i<I¬j<I¬i=j+1
83 62 66 68 71 76 ltletrd φi1N1j1N1i<I¬j<Ii<j
84 62 83 ltned φi1N1j1N1i<I¬j<Iij
85 84 neneqd φi1N1j1N1i<I¬j<I¬i=j
86 82 85 2falsed φi1N1j1N1i<I¬j<Ii=j+1i=j
87 60 86 bitrd φi1N1j1N1i<I¬j<Ii=ifj<Ijj+1i=j
88 57 87 pm2.61dan φi1N1j1N1i<Ii=ifj<Ijj+1i=j
89 54 88 bitrd φi1N1j1N1i<Iifi<Iii+1=ifj<Ijj+1i=j
90 simpr φi1N1j1N1¬i<I¬i<I
91 90 iffalsed φi1N1j1N1¬i<Iifi<Iii+1=i+1
92 91 eqeq1d φi1N1j1N1¬i<Iifi<Iii+1=ifj<Ijj+1i+1=ifj<Ijj+1
93 simpr φi1N1j1N1¬i<Ij<Ij<I
94 93 iftrued φi1N1j1N1¬i<Ij<Iifj<Ijj+1=j
95 94 eqeq2d φi1N1j1N1¬i<Ij<Ii+1=ifj<Ijj+1i+1=j
96 67 ad2antrr φi1N1j1N1¬i<Ij<Ij
97 65 ad3antrrr φi1N1j1N1¬i<Ij<II
98 61 ad2antrr φi1N1j1N1¬i<Ij<Ii
99 1red φi1N1j1N1¬i<Ij<I1
100 98 99 readdcld φi1N1j1N1¬i<Ij<Ii+1
101 72 ad3antrrr φi1N1j1N1¬i<Ij<II
102 20 nnzd φi1N1j1N1i
103 102 ad2antrr φi1N1j1N1¬i<Ij<Ii
104 90 adantr φi1N1j1N1¬i<Ij<I¬i<I
105 97 98 104 nltled φi1N1j1N1¬i<Ij<IIi
106 zleltp1 IiIiI<i+1
107 106 biimpa IiIiI<i+1
108 101 103 105 107 syl21anc φi1N1j1N1¬i<Ij<II<i+1
109 96 97 100 93 108 lttrd φi1N1j1N1¬i<Ij<Ij<i+1
110 96 109 ltned φi1N1j1N1¬i<Ij<Iji+1
111 110 necomd φi1N1j1N1¬i<Ij<Ii+1j
112 111 neneqd φi1N1j1N1¬i<Ij<I¬i+1=j
113 96 97 98 93 105 ltletrd φi1N1j1N1¬i<Ij<Ij<i
114 96 113 ltned φi1N1j1N1¬i<Ij<Iji
115 114 necomd φi1N1j1N1¬i<Ij<Iij
116 115 neneqd φi1N1j1N1¬i<Ij<I¬i=j
117 112 116 2falsed φi1N1j1N1¬i<Ij<Ii+1=ji=j
118 95 117 bitrd φi1N1j1N1¬i<Ij<Ii+1=ifj<Ijj+1i=j
119 simpr φi1N1j1N1¬i<I¬j<I¬j<I
120 119 iffalsed φi1N1j1N1¬i<I¬j<Iifj<Ijj+1=j+1
121 120 eqeq2d φi1N1j1N1¬i<I¬j<Ii+1=ifj<Ijj+1i+1=j+1
122 20 nncnd φi1N1j1N1i
123 122 ad3antrrr φi1N1j1N1¬i<I¬j<Ii+1=j+1i
124 22 nncnd φi1N1j1N1j
125 124 ad3antrrr φi1N1j1N1¬i<I¬j<Ii+1=j+1j
126 1cnd φi1N1j1N1¬i<I¬j<Ii+1=j+11
127 simpr φi1N1j1N1¬i<I¬j<Ii+1=j+1i+1=j+1
128 123 125 126 127 addcan2ad φi1N1j1N1¬i<I¬j<Ii+1=j+1i=j
129 simpr φi1N1j1N1¬i<I¬j<Ii=ji=j
130 129 oveq1d φi1N1j1N1¬i<I¬j<Ii=ji+1=j+1
131 128 130 impbida φi1N1j1N1¬i<I¬j<Ii+1=j+1i=j
132 121 131 bitrd φi1N1j1N1¬i<I¬j<Ii+1=ifj<Ijj+1i=j
133 118 132 pm2.61dan φi1N1j1N1¬i<Ii+1=ifj<Ijj+1i=j
134 92 133 bitrd φi1N1j1N1¬i<Iifi<Iii+1=ifj<Ijj+1i=j
135 89 134 pm2.61dan φi1N1j1N1ifi<Iii+1=ifj<Ijj+1i=j
136 135 ifbid φi1N1j1N1ififi<Iii+1=ifj<Ijj+11R0R=ifi=j1R0R
137 eqid 1N1MatR=1N1MatR
138 fzfid φi1N1j1N11N1Fin
139 eqid 11N1MatR=11N1MatR
140 137 26 27 138 29 19 21 139 mat1ov φi1N1j1N1i11N1MatRj=ifi=j1R0R
141 136 140 eqtr4d φi1N1j1N1ififi<Iii+1=ifj<Ijj+11R0R=i11N1MatRj
142 25 51 141 3eqtrd φi1N1j1N1iIsubMat11˙Ij=i11N1MatRj
143 142 ralrimivva φi1N1j1N1iIsubMat11˙Ij=i11N1MatRj
144 5 3 3 4 4 16 smatrcl φIsubMat11˙IBaseR1N1×1N1
145 elmapfn IsubMat11˙IBaseR1N1×1N1IsubMat11˙IFn1N1×1N1
146 144 145 syl φIsubMat11˙IFn1N1×1N1
147 fzfi 1N1Fin
148 eqid Base1N1MatR=Base1N1MatR
149 137 148 139 mat1bas RRing1N1Fin11N1MatRBase1N1MatR
150 2 147 149 sylancl φ11N1MatRBase1N1MatR
151 137 13 matbas2 1N1FinRRingBaseR1N1×1N1=Base1N1MatR
152 147 2 151 sylancr φBaseR1N1×1N1=Base1N1MatR
153 150 152 eleqtrrd φ11N1MatRBaseR1N1×1N1
154 elmapfn 11N1MatRBaseR1N1×1N111N1MatRFn1N1×1N1
155 153 154 syl φ11N1MatRFn1N1×1N1
156 eqfnov2 IsubMat11˙IFn1N1×1N111N1MatRFn1N1×1N1IsubMat11˙I=11N1MatRi1N1j1N1iIsubMat11˙Ij=i11N1MatRj
157 146 155 156 syl2anc φIsubMat11˙I=11N1MatRi1N1j1N1iIsubMat11˙Ij=i11N1MatRj
158 143 157 mpbird φIsubMat11˙I=11N1MatR