Metamath Proof Explorer


Theorem 2lgsoddprmlem2

Description: Lemma 2 for 2lgsoddprm . (Contributed by AV, 19-Jul-2021)

Ref Expression
Assertion 2lgsoddprmlem2 N¬2NR=Nmod82N2182R218

Proof

Step Hyp Ref Expression
1 8nn 8
2 nnrp 88+
3 1 2 ax-mp 8+
4 eqcom R=Nmod8Nmod8=R
5 modmuladdim N8+Nmod8=RkN=k8+R
6 4 5 biimtrid N8+R=Nmod8kN=k8+R
7 3 6 mpan2 NR=Nmod8kN=k8+R
8 7 imp NR=Nmod8kN=k8+R
9 8 3adant2 N¬2NR=Nmod8kN=k8+R
10 zcn kk
11 8cn 8
12 11 a1i k8
13 10 12 mulcomd kk8=8k
14 13 adantl N¬2NR=Nmod8kk8=8k
15 14 oveq1d N¬2NR=Nmod8kk8+R=8k+R
16 15 eqeq2d N¬2NR=Nmod8kN=k8+RN=8k+R
17 simpr N¬2NR=Nmod8kk
18 17 adantr N¬2NR=Nmod8kN=8k+Rk
19 id NN
20 1 a1i N8
21 19 20 zmodcld NNmod80
22 21 nn0zd NNmod8
23 22 3ad2ant1 N¬2NR=Nmod8Nmod8
24 eleq1 R=Nmod8RNmod8
25 24 3ad2ant3 N¬2NR=Nmod8RNmod8
26 23 25 mpbird N¬2NR=Nmod8R
27 26 adantr N¬2NR=Nmod8kR
28 27 adantr N¬2NR=Nmod8kN=8k+RR
29 simpr N¬2NR=Nmod8kN=8k+RN=8k+R
30 2lgsoddprmlem1 kRN=8k+RN218=8k2+2kR+R218
31 18 28 29 30 syl3anc N¬2NR=Nmod8kN=8k+RN218=8k2+2kR+R218
32 31 breq2d N¬2NR=Nmod8kN=8k+R2N21828k2+2kR+R218
33 2z 2
34 simp1 N¬2NR=Nmod8N
35 1 a1i N¬2NR=Nmod88
36 34 35 zmodcld N¬2NR=Nmod8Nmod80
37 36 nn0red N¬2NR=Nmod8Nmod8
38 eleq1 R=Nmod8RNmod8
39 38 3ad2ant3 N¬2NR=Nmod8RNmod8
40 37 39 mpbird N¬2NR=Nmod8R
41 resqcl RR2
42 peano2rem R2R21
43 41 42 syl RR21
44 8re 8
45 44 a1i R8
46 8pos 0<8
47 44 46 gt0ne0ii 80
48 47 a1i R80
49 43 45 48 redivcld RR218
50 40 49 syl N¬2NR=Nmod8R218
51 50 adantr N¬2NR=Nmod8kR218
52 eleq1 R=Nmod8R0Nmod80
53 52 3ad2ant3 N¬2NR=Nmod8R0Nmod80
54 36 53 mpbird N¬2NR=Nmod8R0
55 nn0z R0R
56 1 nnzi 8
57 56 a1i Rk8
58 zsqcl kk2
59 58 adantl Rkk2
60 57 59 zmulcld Rk8k2
61 33 a1i Rk2
62 zmulcl kRkR
63 62 ancoms RkkR
64 61 63 zmulcld Rk2kR
65 60 64 zaddcld Rk8k2+2kR
66 4z 4
67 66 a1i Rk4
68 67 59 zmulcld Rk4k2
69 68 63 zaddcld Rk4k2+kR
70 61 69 jca Rk24k2+kR
71 dvdsmul1 24k2+kR224k2+kR
72 70 71 syl Rk224k2+kR
73 4t2e8 42=8
74 4cn 4
75 2cn 2
76 74 75 mulcomi 42=24
77 73 76 eqtr3i 8=24
78 77 a1i Rk8=24
79 78 oveq1d Rk8k2=24k2
80 75 a1i Rk2
81 74 a1i Rk4
82 58 zcnd kk2
83 82 adantl Rkk2
84 80 81 83 mulassd Rk24k2=24k2
85 79 84 eqtrd Rk8k2=24k2
86 85 oveq1d Rk8k2+2kR=24k2+2kR
87 68 zcnd Rk4k2
88 62 zcnd kRkR
89 88 ancoms RkkR
90 80 87 89 adddid Rk24k2+kR=24k2+2kR
91 86 90 eqtr4d Rk8k2+2kR=24k2+kR
92 72 91 breqtrrd Rk28k2+2kR
93 65 92 jca Rk8k2+2kR28k2+2kR
94 93 ex Rk8k2+2kR28k2+2kR
95 55 94 syl R0k8k2+2kR28k2+2kR
96 54 95 syl N¬2NR=Nmod8k8k2+2kR28k2+2kR
97 96 imp N¬2NR=Nmod8k8k2+2kR28k2+2kR
98 97 adantr N¬2NR=Nmod8kN=8k+R8k2+2kR28k2+2kR
99 dvdsaddre2b 2R2188k2+2kR28k2+2kR2R21828k2+2kR+R218
100 33 51 98 99 mp3an2ani N¬2NR=Nmod8kN=8k+R2R21828k2+2kR+R218
101 32 100 bitr4d N¬2NR=Nmod8kN=8k+R2N2182R218
102 101 ex N¬2NR=Nmod8kN=8k+R2N2182R218
103 16 102 sylbid N¬2NR=Nmod8kN=k8+R2N2182R218
104 103 rexlimdva N¬2NR=Nmod8kN=k8+R2N2182R218
105 9 104 mpd N¬2NR=Nmod82N2182R218