Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Quadratic reciprocity
2lgsoddprmlem2
Next ⟩
2lgsoddprmlem3a
Metamath Proof Explorer
Ascii
Unicode
Theorem
2lgsoddprmlem2
Description:
Lemma 2 for
2lgsoddprm
.
(Contributed by
AV
, 19-Jul-2021)
Ref
Expression
Assertion
2lgsoddprmlem2
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
→
2
∥
N
2
−
1
8
↔
2
∥
R
2
−
1
8
Proof
Step
Hyp
Ref
Expression
1
8nn
⊢
8
∈
ℕ
2
nnrp
⊢
8
∈
ℕ
→
8
∈
ℝ
+
3
1
2
ax-mp
⊢
8
∈
ℝ
+
4
eqcom
⊢
R
=
N
mod
8
↔
N
mod
8
=
R
5
modmuladdim
⊢
N
∈
ℤ
∧
8
∈
ℝ
+
→
N
mod
8
=
R
→
∃
k
∈
ℤ
N
=
k
⋅
8
+
R
6
4
5
biimtrid
⊢
N
∈
ℤ
∧
8
∈
ℝ
+
→
R
=
N
mod
8
→
∃
k
∈
ℤ
N
=
k
⋅
8
+
R
7
3
6
mpan2
⊢
N
∈
ℤ
→
R
=
N
mod
8
→
∃
k
∈
ℤ
N
=
k
⋅
8
+
R
8
7
imp
⊢
N
∈
ℤ
∧
R
=
N
mod
8
→
∃
k
∈
ℤ
N
=
k
⋅
8
+
R
9
8
3adant2
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
→
∃
k
∈
ℤ
N
=
k
⋅
8
+
R
10
zcn
⊢
k
∈
ℤ
→
k
∈
ℂ
11
8cn
⊢
8
∈
ℂ
12
11
a1i
⊢
k
∈
ℤ
→
8
∈
ℂ
13
10
12
mulcomd
⊢
k
∈
ℤ
→
k
⋅
8
=
8
k
14
13
adantl
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
∧
k
∈
ℤ
→
k
⋅
8
=
8
k
15
14
oveq1d
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
∧
k
∈
ℤ
→
k
⋅
8
+
R
=
8
k
+
R
16
15
eqeq2d
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
∧
k
∈
ℤ
→
N
=
k
⋅
8
+
R
↔
N
=
8
k
+
R
17
simpr
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
∧
k
∈
ℤ
→
k
∈
ℤ
18
17
adantr
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
∧
k
∈
ℤ
∧
N
=
8
k
+
R
→
k
∈
ℤ
19
id
⊢
N
∈
ℤ
→
N
∈
ℤ
20
1
a1i
⊢
N
∈
ℤ
→
8
∈
ℕ
21
19
20
zmodcld
⊢
N
∈
ℤ
→
N
mod
8
∈
ℕ
0
22
21
nn0zd
⊢
N
∈
ℤ
→
N
mod
8
∈
ℤ
23
22
3ad2ant1
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
→
N
mod
8
∈
ℤ
24
eleq1
⊢
R
=
N
mod
8
→
R
∈
ℤ
↔
N
mod
8
∈
ℤ
25
24
3ad2ant3
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
→
R
∈
ℤ
↔
N
mod
8
∈
ℤ
26
23
25
mpbird
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
→
R
∈
ℤ
27
26
adantr
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
∧
k
∈
ℤ
→
R
∈
ℤ
28
27
adantr
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
∧
k
∈
ℤ
∧
N
=
8
k
+
R
→
R
∈
ℤ
29
simpr
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
∧
k
∈
ℤ
∧
N
=
8
k
+
R
→
N
=
8
k
+
R
30
2lgsoddprmlem1
⊢
k
∈
ℤ
∧
R
∈
ℤ
∧
N
=
8
k
+
R
→
N
2
−
1
8
=
8
k
2
+
2
k
R
+
R
2
−
1
8
31
18
28
29
30
syl3anc
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
∧
k
∈
ℤ
∧
N
=
8
k
+
R
→
N
2
−
1
8
=
8
k
2
+
2
k
R
+
R
2
−
1
8
32
31
breq2d
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
∧
k
∈
ℤ
∧
N
=
8
k
+
R
→
2
∥
N
2
−
1
8
↔
2
∥
8
k
2
+
2
k
R
+
R
2
−
1
8
33
2z
⊢
2
∈
ℤ
34
simp1
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
→
N
∈
ℤ
35
1
a1i
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
→
8
∈
ℕ
36
34
35
zmodcld
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
→
N
mod
8
∈
ℕ
0
37
36
nn0red
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
→
N
mod
8
∈
ℝ
38
eleq1
⊢
R
=
N
mod
8
→
R
∈
ℝ
↔
N
mod
8
∈
ℝ
39
38
3ad2ant3
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
→
R
∈
ℝ
↔
N
mod
8
∈
ℝ
40
37
39
mpbird
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
→
R
∈
ℝ
41
resqcl
⊢
R
∈
ℝ
→
R
2
∈
ℝ
42
peano2rem
⊢
R
2
∈
ℝ
→
R
2
−
1
∈
ℝ
43
41
42
syl
⊢
R
∈
ℝ
→
R
2
−
1
∈
ℝ
44
8re
⊢
8
∈
ℝ
45
44
a1i
⊢
R
∈
ℝ
→
8
∈
ℝ
46
8pos
⊢
0
<
8
47
44
46
gt0ne0ii
⊢
8
≠
0
48
47
a1i
⊢
R
∈
ℝ
→
8
≠
0
49
43
45
48
redivcld
⊢
R
∈
ℝ
→
R
2
−
1
8
∈
ℝ
50
40
49
syl
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
→
R
2
−
1
8
∈
ℝ
51
50
adantr
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
∧
k
∈
ℤ
→
R
2
−
1
8
∈
ℝ
52
eleq1
⊢
R
=
N
mod
8
→
R
∈
ℕ
0
↔
N
mod
8
∈
ℕ
0
53
52
3ad2ant3
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
→
R
∈
ℕ
0
↔
N
mod
8
∈
ℕ
0
54
36
53
mpbird
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
→
R
∈
ℕ
0
55
nn0z
⊢
R
∈
ℕ
0
→
R
∈
ℤ
56
1
nnzi
⊢
8
∈
ℤ
57
56
a1i
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
8
∈
ℤ
58
zsqcl
⊢
k
∈
ℤ
→
k
2
∈
ℤ
59
58
adantl
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
k
2
∈
ℤ
60
57
59
zmulcld
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
8
k
2
∈
ℤ
61
33
a1i
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
2
∈
ℤ
62
zmulcl
⊢
k
∈
ℤ
∧
R
∈
ℤ
→
k
R
∈
ℤ
63
62
ancoms
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
k
R
∈
ℤ
64
61
63
zmulcld
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
2
k
R
∈
ℤ
65
60
64
zaddcld
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
8
k
2
+
2
k
R
∈
ℤ
66
4z
⊢
4
∈
ℤ
67
66
a1i
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
4
∈
ℤ
68
67
59
zmulcld
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
4
k
2
∈
ℤ
69
68
63
zaddcld
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
4
k
2
+
k
R
∈
ℤ
70
61
69
jca
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
2
∈
ℤ
∧
4
k
2
+
k
R
∈
ℤ
71
dvdsmul1
⊢
2
∈
ℤ
∧
4
k
2
+
k
R
∈
ℤ
→
2
∥
2
4
k
2
+
k
R
72
70
71
syl
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
2
∥
2
4
k
2
+
k
R
73
4t2e8
⊢
4
⋅
2
=
8
74
4cn
⊢
4
∈
ℂ
75
2cn
⊢
2
∈
ℂ
76
74
75
mulcomi
⊢
4
⋅
2
=
2
⋅
4
77
73
76
eqtr3i
⊢
8
=
2
⋅
4
78
77
a1i
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
8
=
2
⋅
4
79
78
oveq1d
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
8
k
2
=
2
⋅
4
k
2
80
75
a1i
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
2
∈
ℂ
81
74
a1i
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
4
∈
ℂ
82
58
zcnd
⊢
k
∈
ℤ
→
k
2
∈
ℂ
83
82
adantl
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
k
2
∈
ℂ
84
80
81
83
mulassd
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
2
⋅
4
k
2
=
2
4
k
2
85
79
84
eqtrd
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
8
k
2
=
2
4
k
2
86
85
oveq1d
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
8
k
2
+
2
k
R
=
2
4
k
2
+
2
k
R
87
68
zcnd
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
4
k
2
∈
ℂ
88
62
zcnd
⊢
k
∈
ℤ
∧
R
∈
ℤ
→
k
R
∈
ℂ
89
88
ancoms
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
k
R
∈
ℂ
90
80
87
89
adddid
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
2
4
k
2
+
k
R
=
2
4
k
2
+
2
k
R
91
86
90
eqtr4d
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
8
k
2
+
2
k
R
=
2
4
k
2
+
k
R
92
72
91
breqtrrd
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
2
∥
8
k
2
+
2
k
R
93
65
92
jca
⊢
R
∈
ℤ
∧
k
∈
ℤ
→
8
k
2
+
2
k
R
∈
ℤ
∧
2
∥
8
k
2
+
2
k
R
94
93
ex
⊢
R
∈
ℤ
→
k
∈
ℤ
→
8
k
2
+
2
k
R
∈
ℤ
∧
2
∥
8
k
2
+
2
k
R
95
55
94
syl
⊢
R
∈
ℕ
0
→
k
∈
ℤ
→
8
k
2
+
2
k
R
∈
ℤ
∧
2
∥
8
k
2
+
2
k
R
96
54
95
syl
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
→
k
∈
ℤ
→
8
k
2
+
2
k
R
∈
ℤ
∧
2
∥
8
k
2
+
2
k
R
97
96
imp
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
∧
k
∈
ℤ
→
8
k
2
+
2
k
R
∈
ℤ
∧
2
∥
8
k
2
+
2
k
R
98
97
adantr
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
∧
k
∈
ℤ
∧
N
=
8
k
+
R
→
8
k
2
+
2
k
R
∈
ℤ
∧
2
∥
8
k
2
+
2
k
R
99
dvdsaddre2b
⊢
2
∈
ℤ
∧
R
2
−
1
8
∈
ℝ
∧
8
k
2
+
2
k
R
∈
ℤ
∧
2
∥
8
k
2
+
2
k
R
→
2
∥
R
2
−
1
8
↔
2
∥
8
k
2
+
2
k
R
+
R
2
−
1
8
100
33
51
98
99
mp3an2ani
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
∧
k
∈
ℤ
∧
N
=
8
k
+
R
→
2
∥
R
2
−
1
8
↔
2
∥
8
k
2
+
2
k
R
+
R
2
−
1
8
101
32
100
bitr4d
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
∧
k
∈
ℤ
∧
N
=
8
k
+
R
→
2
∥
N
2
−
1
8
↔
2
∥
R
2
−
1
8
102
101
ex
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
∧
k
∈
ℤ
→
N
=
8
k
+
R
→
2
∥
N
2
−
1
8
↔
2
∥
R
2
−
1
8
103
16
102
sylbid
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
∧
k
∈
ℤ
→
N
=
k
⋅
8
+
R
→
2
∥
N
2
−
1
8
↔
2
∥
R
2
−
1
8
104
103
rexlimdva
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
→
∃
k
∈
ℤ
N
=
k
⋅
8
+
R
→
2
∥
N
2
−
1
8
↔
2
∥
R
2
−
1
8
105
9
104
mpd
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
R
=
N
mod
8
→
2
∥
N
2
−
1
8
↔
2
∥
R
2
−
1
8