Metamath Proof Explorer


Theorem 2ndmbfm

Description: The second projection map is measurable with regard to the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017)

Ref Expression
Hypotheses 1stmbfm.1 φ S ran sigAlgebra
1stmbfm.2 φ T ran sigAlgebra
Assertion 2ndmbfm φ 2 nd S × T S × s T MblFn μ T

Proof

Step Hyp Ref Expression
1 1stmbfm.1 φ S ran sigAlgebra
2 1stmbfm.2 φ T ran sigAlgebra
3 f2ndres 2 nd S × T : S × T T
4 sxuni S ran sigAlgebra T ran sigAlgebra S × T = S × s T
5 1 2 4 syl2anc φ S × T = S × s T
6 5 feq2d φ 2 nd S × T : S × T T 2 nd S × T : S × s T T
7 3 6 mpbii φ 2 nd S × T : S × s T T
8 unielsiga T ran sigAlgebra T T
9 2 8 syl φ T T
10 sxsiga S ran sigAlgebra T ran sigAlgebra S × s T ran sigAlgebra
11 1 2 10 syl2anc φ S × s T ran sigAlgebra
12 unielsiga S × s T ran sigAlgebra S × s T S × s T
13 11 12 syl φ S × s T S × s T
14 9 13 elmapd φ 2 nd S × T T S × s T 2 nd S × T : S × s T T
15 7 14 mpbird φ 2 nd S × T T S × s T
16 ffn 2 nd S × T : S × T T 2 nd S × T Fn S × T
17 elpreima 2 nd S × T Fn S × T z 2 nd S × T -1 a z S × T 2 nd S × T z a
18 3 16 17 mp2b z 2 nd S × T -1 a z S × T 2 nd S × T z a
19 fvres z S × T 2 nd S × T z = 2 nd z
20 19 eleq1d z S × T 2 nd S × T z a 2 nd z a
21 1st2nd2 z S × T z = 1 st z 2 nd z
22 xp1st z S × T 1 st z S
23 elxp6 z S × a z = 1 st z 2 nd z 1 st z S 2 nd z a
24 anass z = 1 st z 2 nd z 1 st z S 2 nd z a z = 1 st z 2 nd z 1 st z S 2 nd z a
25 23 24 bitr4i z S × a z = 1 st z 2 nd z 1 st z S 2 nd z a
26 25 baib z = 1 st z 2 nd z 1 st z S z S × a 2 nd z a
27 21 22 26 syl2anc z S × T z S × a 2 nd z a
28 20 27 bitr4d z S × T 2 nd S × T z a z S × a
29 28 pm5.32i z S × T 2 nd S × T z a z S × T z S × a
30 18 29 bitri z 2 nd S × T -1 a z S × T z S × a
31 sgon T ran sigAlgebra T sigAlgebra T
32 sigasspw T sigAlgebra T T 𝒫 T
33 pwssb T 𝒫 T a T a T
34 33 biimpi T 𝒫 T a T a T
35 2 31 32 34 4syl φ a T a T
36 35 r19.21bi φ a T a T
37 xpss2 a T S × a S × T
38 36 37 syl φ a T S × a S × T
39 38 sseld φ a T z S × a z S × T
40 39 pm4.71rd φ a T z S × a z S × T z S × a
41 30 40 bitr4id φ a T z 2 nd S × T -1 a z S × a
42 41 eqrdv φ a T 2 nd S × T -1 a = S × a
43 1 adantr φ a T S ran sigAlgebra
44 2 adantr φ a T T ran sigAlgebra
45 eqid S = S
46 issgon S sigAlgebra S S ran sigAlgebra S = S
47 1 45 46 sylanblrc φ S sigAlgebra S
48 baselsiga S sigAlgebra S S S
49 47 48 syl φ S S
50 49 adantr φ a T S S
51 simpr φ a T a T
52 elsx S ran sigAlgebra T ran sigAlgebra S S a T S × a S × s T
53 43 44 50 51 52 syl22anc φ a T S × a S × s T
54 42 53 eqeltrd φ a T 2 nd S × T -1 a S × s T
55 54 ralrimiva φ a T 2 nd S × T -1 a S × s T
56 11 2 ismbfm φ 2 nd S × T S × s T MblFn μ T 2 nd S × T T S × s T a T 2 nd S × T -1 a S × s T
57 15 55 56 mpbir2and φ 2 nd S × T S × s T MblFn μ T