Metamath Proof Explorer


Theorem 2pthon3v

Description: For a vertex adjacent to two other vertices there is a simple path of length 2 between these other vertices in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 24-Jan-2021)

Ref Expression
Hypotheses 2pthon3v.v V=VtxG
2pthon3v.e E=EdgG
Assertion 2pthon3v GUHGraphAVBVCVABACBCABEBCEfpfASPathsOnGCpf=2

Proof

Step Hyp Ref Expression
1 2pthon3v.v V=VtxG
2 2pthon3v.e E=EdgG
3 edgval EdgG=raniEdgG
4 2 3 eqtri E=raniEdgG
5 4 eleq2i ABEABraniEdgG
6 eqid iEdgG=iEdgG
7 1 6 uhgrf GUHGraphiEdgG:domiEdgG𝒫V
8 7 ffnd GUHGraphiEdgGFndomiEdgG
9 fvelrnb iEdgGFndomiEdgGABraniEdgGidomiEdgGiEdgGi=AB
10 8 9 syl GUHGraphABraniEdgGidomiEdgGiEdgGi=AB
11 5 10 bitrid GUHGraphABEidomiEdgGiEdgGi=AB
12 4 eleq2i BCEBCraniEdgG
13 fvelrnb iEdgGFndomiEdgGBCraniEdgGjdomiEdgGiEdgGj=BC
14 8 13 syl GUHGraphBCraniEdgGjdomiEdgGiEdgGj=BC
15 12 14 bitrid GUHGraphBCEjdomiEdgGiEdgGj=BC
16 11 15 anbi12d GUHGraphABEBCEidomiEdgGiEdgGi=ABjdomiEdgGiEdgGj=BC
17 16 adantr GUHGraphAVBVCVABEBCEidomiEdgGiEdgGi=ABjdomiEdgGiEdgGj=BC
18 17 adantr GUHGraphAVBVCVABACBCABEBCEidomiEdgGiEdgGi=ABjdomiEdgGiEdgGj=BC
19 reeanv idomiEdgGjdomiEdgGiEdgGi=ABiEdgGj=BCidomiEdgGiEdgGi=ABjdomiEdgGiEdgGj=BC
20 18 19 bitr4di GUHGraphAVBVCVABACBCABEBCEidomiEdgGjdomiEdgGiEdgGi=ABiEdgGj=BC
21 df-s2 ⟨“ij”⟩=⟨“i”⟩++⟨“j”⟩
22 21 ovexi ⟨“ij”⟩V
23 df-s3 ⟨“ABC”⟩=⟨“AB”⟩++⟨“C”⟩
24 23 ovexi ⟨“ABC”⟩V
25 22 24 pm3.2i ⟨“ij”⟩V⟨“ABC”⟩V
26 eqid ⟨“ABC”⟩=⟨“ABC”⟩
27 eqid ⟨“ij”⟩=⟨“ij”⟩
28 simp-4r GUHGraphAVBVCVABACBCidomiEdgGjdomiEdgGiEdgGi=ABiEdgGj=BCAVBVCV
29 3simpb ABACBCABBC
30 29 ad3antlr GUHGraphAVBVCVABACBCidomiEdgGjdomiEdgGiEdgGi=ABiEdgGj=BCABBC
31 eqimss2 iEdgGi=ABABiEdgGi
32 eqimss2 iEdgGj=BCBCiEdgGj
33 31 32 anim12i iEdgGi=ABiEdgGj=BCABiEdgGiBCiEdgGj
34 33 adantl GUHGraphAVBVCVABACBCidomiEdgGjdomiEdgGiEdgGi=ABiEdgGj=BCABiEdgGiBCiEdgGj
35 fveqeq2 i=jiEdgGi=ABiEdgGj=AB
36 35 anbi1d i=jiEdgGi=ABiEdgGj=BCiEdgGj=ABiEdgGj=BC
37 eqtr2 iEdgGj=ABiEdgGj=BCAB=BC
38 3simpa AVBVCVAVBV
39 3simpc AVBVCVBVCV
40 preq12bg AVBVBVCVAB=BCA=BB=CA=CB=B
41 38 39 40 syl2anc AVBVCVAB=BCA=BB=CA=CB=B
42 eqneqall A=BABij
43 42 com12 ABA=Bij
44 43 3ad2ant1 ABACBCA=Bij
45 44 com12 A=BABACBCij
46 45 adantr A=BB=CABACBCij
47 eqneqall A=CACij
48 47 com12 ACA=Cij
49 48 3ad2ant2 ABACBCA=Cij
50 49 com12 A=CABACBCij
51 50 adantr A=CB=BABACBCij
52 46 51 jaoi A=BB=CA=CB=BABACBCij
53 41 52 syl6bi AVBVCVAB=BCABACBCij
54 53 com23 AVBVCVABACBCAB=BCij
55 54 adantl GUHGraphAVBVCVABACBCAB=BCij
56 55 imp GUHGraphAVBVCVABACBCAB=BCij
57 56 com12 AB=BCGUHGraphAVBVCVABACBCij
58 37 57 syl iEdgGj=ABiEdgGj=BCGUHGraphAVBVCVABACBCij
59 36 58 syl6bi i=jiEdgGi=ABiEdgGj=BCGUHGraphAVBVCVABACBCij
60 59 com23 i=jGUHGraphAVBVCVABACBCiEdgGi=ABiEdgGj=BCij
61 2a1 ijGUHGraphAVBVCVABACBCiEdgGi=ABiEdgGj=BCij
62 60 61 pm2.61ine GUHGraphAVBVCVABACBCiEdgGi=ABiEdgGj=BCij
63 62 adantr GUHGraphAVBVCVABACBCidomiEdgGjdomiEdgGiEdgGi=ABiEdgGj=BCij
64 63 imp GUHGraphAVBVCVABACBCidomiEdgGjdomiEdgGiEdgGi=ABiEdgGj=BCij
65 simplr2 GUHGraphAVBVCVABACBCidomiEdgGjdomiEdgGAC
66 65 adantr GUHGraphAVBVCVABACBCidomiEdgGjdomiEdgGiEdgGi=ABiEdgGj=BCAC
67 26 27 28 30 34 1 6 64 66 2pthond GUHGraphAVBVCVABACBCidomiEdgGjdomiEdgGiEdgGi=ABiEdgGj=BC⟨“ij”⟩ASPathsOnGC⟨“ABC”⟩
68 s2len ⟨“ij”⟩=2
69 67 68 jctir GUHGraphAVBVCVABACBCidomiEdgGjdomiEdgGiEdgGi=ABiEdgGj=BC⟨“ij”⟩ASPathsOnGC⟨“ABC”⟩⟨“ij”⟩=2
70 breq12 f=⟨“ij”⟩p=⟨“ABC”⟩fASPathsOnGCp⟨“ij”⟩ASPathsOnGC⟨“ABC”⟩
71 fveqeq2 f=⟨“ij”⟩f=2⟨“ij”⟩=2
72 71 adantr f=⟨“ij”⟩p=⟨“ABC”⟩f=2⟨“ij”⟩=2
73 70 72 anbi12d f=⟨“ij”⟩p=⟨“ABC”⟩fASPathsOnGCpf=2⟨“ij”⟩ASPathsOnGC⟨“ABC”⟩⟨“ij”⟩=2
74 73 spc2egv ⟨“ij”⟩V⟨“ABC”⟩V⟨“ij”⟩ASPathsOnGC⟨“ABC”⟩⟨“ij”⟩=2fpfASPathsOnGCpf=2
75 25 69 74 mpsyl GUHGraphAVBVCVABACBCidomiEdgGjdomiEdgGiEdgGi=ABiEdgGj=BCfpfASPathsOnGCpf=2
76 75 ex GUHGraphAVBVCVABACBCidomiEdgGjdomiEdgGiEdgGi=ABiEdgGj=BCfpfASPathsOnGCpf=2
77 76 rexlimdvva GUHGraphAVBVCVABACBCidomiEdgGjdomiEdgGiEdgGi=ABiEdgGj=BCfpfASPathsOnGCpf=2
78 20 77 sylbid GUHGraphAVBVCVABACBCABEBCEfpfASPathsOnGCpf=2
79 78 3impia GUHGraphAVBVCVABACBCABEBCEfpfASPathsOnGCpf=2