Description: Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2sq.1 | |
|
2sqlem7.2 | |
||
Assertion | 2sqlem11 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sq.1 | |
|
2 | 2sqlem7.2 | |
|
3 | simpr | |
|
4 | simpl | |
|
5 | 1ne2 | |
|
6 | 5 | necomi | |
7 | oveq1 | |
|
8 | 2re | |
|
9 | 4re | |
|
10 | 4pos | |
|
11 | 9 10 | elrpii | |
12 | 0le2 | |
|
13 | 2lt4 | |
|
14 | modid | |
|
15 | 8 11 12 13 14 | mp4an | |
16 | 7 15 | eqtrdi | |
17 | 16 | neeq1d | |
18 | 6 17 | mpbiri | |
19 | 18 | necon2i | |
20 | 3 19 | syl | |
21 | eldifsn | |
|
22 | 4 20 21 | sylanbrc | |
23 | m1lgs | |
|
24 | 22 23 | syl | |
25 | 3 24 | mpbird | |
26 | neg1z | |
|
27 | lgsqr | |
|
28 | 26 22 27 | sylancr | |
29 | 25 28 | mpbid | |
30 | 29 | simprd | |
31 | simprl | |
|
32 | 1zzd | |
|
33 | gcd1 | |
|
34 | 33 | ad2antrl | |
35 | eqidd | |
|
36 | oveq1 | |
|
37 | 36 | eqeq1d | |
38 | oveq1 | |
|
39 | 38 | oveq1d | |
40 | 39 | eqeq2d | |
41 | 37 40 | anbi12d | |
42 | oveq2 | |
|
43 | 42 | eqeq1d | |
44 | oveq1 | |
|
45 | sq1 | |
|
46 | 44 45 | eqtrdi | |
47 | 46 | oveq2d | |
48 | 47 | eqeq2d | |
49 | 43 48 | anbi12d | |
50 | 41 49 | rspc2ev | |
51 | 31 32 34 35 50 | syl112anc | |
52 | ovex | |
|
53 | eqeq1 | |
|
54 | 53 | anbi2d | |
55 | 54 | 2rexbidv | |
56 | 52 55 2 | elab2 | |
57 | 51 56 | sylibr | |
58 | prmnn | |
|
59 | 58 | ad2antrr | |
60 | simprr | |
|
61 | 31 | zcnd | |
62 | 61 | sqcld | |
63 | ax-1cn | |
|
64 | subneg | |
|
65 | 62 63 64 | sylancl | |
66 | 60 65 | breqtrd | |
67 | 1 2 | 2sqlem10 | |
68 | 57 59 66 67 | syl3anc | |
69 | 30 68 | rexlimddv | |