Metamath Proof Explorer


Theorem 2sqlem3

Description: Lemma for 2sqlem5 . (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypotheses 2sq.1 S=ranwiw2
2sqlem5.1 φN
2sqlem5.2 φP
2sqlem4.3 φA
2sqlem4.4 φB
2sqlem4.5 φC
2sqlem4.6 φD
2sqlem4.7 φNP=A2+B2
2sqlem4.8 φP=C2+D2
2sqlem4.9 φPCB+AD
Assertion 2sqlem3 φNS

Proof

Step Hyp Ref Expression
1 2sq.1 S=ranwiw2
2 2sqlem5.1 φN
3 2sqlem5.2 φP
4 2sqlem4.3 φA
5 2sqlem4.4 φB
6 2sqlem4.5 φC
7 2sqlem4.6 φD
8 2sqlem4.7 φNP=A2+B2
9 2sqlem4.8 φP=C2+D2
10 2sqlem4.9 φPCB+AD
11 gzreim ABA+iBi
12 4 5 11 syl2anc φA+iBi
13 gzreim CDC+iDi
14 6 7 13 syl2anc φC+iDi
15 gzmulcl A+iBiC+iDiA+iBC+iDi
16 12 14 15 syl2anc φA+iBC+iDi
17 gzcn A+iBC+iDiA+iBC+iD
18 16 17 syl φA+iBC+iD
19 prmnn PP
20 3 19 syl φP
21 20 nncnd φP
22 20 nnne0d φP0
23 18 21 22 divcld φA+iBC+iDP
24 20 nnred φP
25 24 18 22 redivd φA+iBC+iDP=A+iBC+iDP
26 prmz PP
27 3 26 syl φP
28 zsqcl PP2
29 27 28 syl φP2
30 2 nnzd φN
31 30 29 zmulcld φNP2
32 dvdsmul2 PPPPP
33 27 27 32 syl2anc φPPP
34 21 sqvald φP2=PP
35 33 34 breqtrrd φPP2
36 dvdsmul2 NP2P2NP2
37 30 29 36 syl2anc φP2NP2
38 27 29 31 35 37 dvdstrd φPNP2
39 gzcn A+iBiA+iB
40 12 39 syl φA+iB
41 40 abscld φA+iB
42 41 recnd φA+iB
43 gzcn C+iDiC+iD
44 14 43 syl φC+iD
45 44 abscld φC+iD
46 45 recnd φC+iD
47 42 46 sqmuld φA+iBC+iD2=A+iB2C+iD2
48 4 zred φA
49 5 zred φB
50 48 49 crred φA+iB=A
51 50 oveq1d φA+iB2=A2
52 48 49 crimd φA+iB=B
53 52 oveq1d φA+iB2=B2
54 51 53 oveq12d φA+iB2+A+iB2=A2+B2
55 40 absvalsq2d φA+iB2=A+iB2+A+iB2
56 54 55 8 3eqtr4d φA+iB2=NP
57 6 zred φC
58 7 zred φD
59 57 58 crred φC+iD=C
60 59 oveq1d φC+iD2=C2
61 57 58 crimd φC+iD=D
62 61 oveq1d φC+iD2=D2
63 60 62 oveq12d φC+iD2+C+iD2=C2+D2
64 44 absvalsq2d φC+iD2=C+iD2+C+iD2
65 63 64 9 3eqtr4d φC+iD2=P
66 56 65 oveq12d φA+iB2C+iD2=NPP
67 2 nncnd φN
68 67 21 21 mulassd φNPP=NPP
69 47 66 68 3eqtrd φA+iBC+iD2=NPP
70 40 44 absmuld φA+iBC+iD=A+iBC+iD
71 70 oveq1d φA+iBC+iD2=A+iBC+iD2
72 34 oveq2d φNP2=NPP
73 69 71 72 3eqtr4d φA+iBC+iD2=NP2
74 38 73 breqtrrd φPA+iBC+iD2
75 18 absvalsq2d φA+iBC+iD2=A+iBC+iD2+A+iBC+iD2
76 elgz A+iBC+iDiA+iBC+iDA+iBC+iDA+iBC+iD
77 76 simp2bi A+iBC+iDiA+iBC+iD
78 16 77 syl φA+iBC+iD
79 zsqcl A+iBC+iDA+iBC+iD2
80 78 79 syl φA+iBC+iD2
81 80 zcnd φA+iBC+iD2
82 76 simp3bi A+iBC+iDiA+iBC+iD
83 16 82 syl φA+iBC+iD
84 zsqcl A+iBC+iDA+iBC+iD2
85 83 84 syl φA+iBC+iD2
86 85 zcnd φA+iBC+iD2
87 81 86 addcomd φA+iBC+iD2+A+iBC+iD2=A+iBC+iD2+A+iBC+iD2
88 75 87 eqtrd φA+iBC+iD2=A+iBC+iD2+A+iBC+iD2
89 74 88 breqtrd φPA+iBC+iD2+A+iBC+iD2
90 6 zcnd φC
91 5 zcnd φB
92 90 91 mulcld φCB
93 4 zcnd φA
94 7 zcnd φD
95 93 94 mulcld φAD
96 92 95 addcomd φCB+AD=AD+CB
97 90 91 mulcomd φCB=BC
98 97 oveq2d φAD+CB=AD+BC
99 96 98 eqtrd φCB+AD=AD+BC
100 10 99 breqtrd φPAD+BC
101 40 44 immuld φA+iBC+iD=A+iBC+iD+A+iBC+iD
102 50 61 oveq12d φA+iBC+iD=AD
103 52 59 oveq12d φA+iBC+iD=BC
104 102 103 oveq12d φA+iBC+iD+A+iBC+iD=AD+BC
105 101 104 eqtrd φA+iBC+iD=AD+BC
106 100 105 breqtrrd φPA+iBC+iD
107 2nn 2
108 107 a1i φ2
109 prmdvdsexp PA+iBC+iD2PA+iBC+iD2PA+iBC+iD
110 3 83 108 109 syl3anc φPA+iBC+iD2PA+iBC+iD
111 106 110 mpbird φPA+iBC+iD2
112 dvdsadd2b PA+iBC+iD2A+iBC+iD2PA+iBC+iD2PA+iBC+iD2PA+iBC+iD2+A+iBC+iD2
113 27 80 85 111 112 syl112anc φPA+iBC+iD2PA+iBC+iD2+A+iBC+iD2
114 89 113 mpbird φPA+iBC+iD2
115 prmdvdsexp PA+iBC+iD2PA+iBC+iD2PA+iBC+iD
116 3 78 108 115 syl3anc φPA+iBC+iD2PA+iBC+iD
117 114 116 mpbid φPA+iBC+iD
118 dvdsval2 PP0A+iBC+iDPA+iBC+iDA+iBC+iDP
119 27 22 78 118 syl3anc φPA+iBC+iDA+iBC+iDP
120 117 119 mpbid φA+iBC+iDP
121 25 120 eqeltrd φA+iBC+iDP
122 24 18 22 imdivd φA+iBC+iDP=A+iBC+iDP
123 dvdsval2 PP0A+iBC+iDPA+iBC+iDA+iBC+iDP
124 27 22 83 123 syl3anc φPA+iBC+iDA+iBC+iDP
125 106 124 mpbid φA+iBC+iDP
126 122 125 eqeltrd φA+iBC+iDP
127 elgz A+iBC+iDPiA+iBC+iDPA+iBC+iDPA+iBC+iDP
128 23 121 126 127 syl3anbrc φA+iBC+iDPi
129 18 21 22 absdivd φA+iBC+iDP=A+iBC+iDP
130 20 nnnn0d φP0
131 130 nn0ge0d φ0P
132 24 131 absidd φP=P
133 132 oveq2d φA+iBC+iDP=A+iBC+iDP
134 129 133 eqtrd φA+iBC+iDP=A+iBC+iDP
135 134 oveq1d φA+iBC+iDP2=A+iBC+iDP2
136 18 abscld φA+iBC+iD
137 136 recnd φA+iBC+iD
138 137 21 22 sqdivd φA+iBC+iDP2=A+iBC+iD2P2
139 73 oveq1d φA+iBC+iD2P2=NP2P2
140 20 nnsqcld φP2
141 140 nncnd φP2
142 140 nnne0d φP20
143 67 141 142 divcan4d φNP2P2=N
144 139 143 eqtrd φA+iBC+iD2P2=N
145 135 138 144 3eqtrrd φN=A+iBC+iDP2
146 fveq2 x=A+iBC+iDPx=A+iBC+iDP
147 146 oveq1d x=A+iBC+iDPx2=A+iBC+iDP2
148 147 rspceeqv A+iBC+iDPiN=A+iBC+iDP2xiN=x2
149 128 145 148 syl2anc φxiN=x2
150 1 2sqlem1 NSxiN=x2
151 149 150 sylibr φNS