Metamath Proof Explorer


Theorem aaliou2b

Description: Liouville's approximation theorem extended to complex A . (Contributed by Stefan O'Rear, 20-Nov-2014)

Ref Expression
Assertion aaliou2b A 𝔸 k x + p q A = p q x q k < A p q

Proof

Step Hyp Ref Expression
1 elin A 𝔸 A 𝔸 A
2 aaliou2 A 𝔸 k x + p q A = p q x q k < A p q
3 1 2 sylbir A 𝔸 A k x + p q A = p q x q k < A p q
4 1nn 1
5 aacn A 𝔸 A
6 5 adantr A 𝔸 ¬ A A
7 6 imcld A 𝔸 ¬ A A
8 7 recnd A 𝔸 ¬ A A
9 reim0b A A A = 0
10 5 9 syl A 𝔸 A A = 0
11 10 necon3bbid A 𝔸 ¬ A A 0
12 11 biimpa A 𝔸 ¬ A A 0
13 8 12 absrpcld A 𝔸 ¬ A A +
14 13 rphalfcld A 𝔸 ¬ A A 2 +
15 14 adantr A 𝔸 ¬ A p q A 2 +
16 1nn0 1 0
17 nnexpcl q 1 0 q 1
18 16 17 mpan2 q q 1
19 18 ad2antll A 𝔸 ¬ A p q q 1
20 19 nnrpd A 𝔸 ¬ A p q q 1 +
21 15 20 rpdivcld A 𝔸 ¬ A p q A 2 q 1 +
22 21 rpred A 𝔸 ¬ A p q A 2 q 1
23 15 rpred A 𝔸 ¬ A p q A 2
24 6 adantr A 𝔸 ¬ A p q A
25 znq p q p q
26 25 adantl A 𝔸 ¬ A p q p q
27 qre p q p q
28 26 27 syl A 𝔸 ¬ A p q p q
29 28 recnd A 𝔸 ¬ A p q p q
30 24 29 subcld A 𝔸 ¬ A p q A p q
31 30 abscld A 𝔸 ¬ A p q A p q
32 19 nnge1d A 𝔸 ¬ A p q 1 q 1
33 1rp 1 +
34 rpregt0 1 + 1 0 < 1
35 33 34 mp1i A 𝔸 ¬ A p q 1 0 < 1
36 20 rpregt0d A 𝔸 ¬ A p q q 1 0 < q 1
37 15 rpregt0d A 𝔸 ¬ A p q A 2 0 < A 2
38 lediv2 1 0 < 1 q 1 0 < q 1 A 2 0 < A 2 1 q 1 A 2 q 1 A 2 1
39 35 36 37 38 syl3anc A 𝔸 ¬ A p q 1 q 1 A 2 q 1 A 2 1
40 32 39 mpbid A 𝔸 ¬ A p q A 2 q 1 A 2 1
41 15 rpcnd A 𝔸 ¬ A p q A 2
42 41 div1d A 𝔸 ¬ A p q A 2 1 = A 2
43 40 42 breqtrd A 𝔸 ¬ A p q A 2 q 1 A 2
44 13 adantr A 𝔸 ¬ A p q A +
45 44 rpred A 𝔸 ¬ A p q A
46 rphalflt A + A 2 < A
47 44 46 syl A 𝔸 ¬ A p q A 2 < A
48 24 29 imsubd A 𝔸 ¬ A p q A p q = A p q
49 28 reim0d A 𝔸 ¬ A p q p q = 0
50 49 oveq2d A 𝔸 ¬ A p q A p q = A 0
51 8 adantr A 𝔸 ¬ A p q A
52 51 subid1d A 𝔸 ¬ A p q A 0 = A
53 48 50 52 3eqtrd A 𝔸 ¬ A p q A p q = A
54 53 fveq2d A 𝔸 ¬ A p q A p q = A
55 absimle A p q A p q A p q
56 30 55 syl A 𝔸 ¬ A p q A p q A p q
57 54 56 eqbrtrrd A 𝔸 ¬ A p q A A p q
58 23 45 31 47 57 ltletrd A 𝔸 ¬ A p q A 2 < A p q
59 22 23 31 43 58 lelttrd A 𝔸 ¬ A p q A 2 q 1 < A p q
60 59 olcd A 𝔸 ¬ A p q A = p q A 2 q 1 < A p q
61 60 ralrimivva A 𝔸 ¬ A p q A = p q A 2 q 1 < A p q
62 oveq2 k = 1 q k = q 1
63 62 oveq2d k = 1 x q k = x q 1
64 63 breq1d k = 1 x q k < A p q x q 1 < A p q
65 64 orbi2d k = 1 A = p q x q k < A p q A = p q x q 1 < A p q
66 65 2ralbidv k = 1 p q A = p q x q k < A p q p q A = p q x q 1 < A p q
67 oveq1 x = A 2 x q 1 = A 2 q 1
68 67 breq1d x = A 2 x q 1 < A p q A 2 q 1 < A p q
69 68 orbi2d x = A 2 A = p q x q 1 < A p q A = p q A 2 q 1 < A p q
70 69 2ralbidv x = A 2 p q A = p q x q 1 < A p q p q A = p q A 2 q 1 < A p q
71 66 70 rspc2ev 1 A 2 + p q A = p q A 2 q 1 < A p q k x + p q A = p q x q k < A p q
72 4 14 61 71 mp3an2i A 𝔸 ¬ A k x + p q A = p q x q k < A p q
73 3 72 pm2.61dan A 𝔸 k x + p q A = p q x q k < A p q