Metamath Proof Explorer


Theorem aalioulem1

Description: Lemma for aaliou . An integer polynomial cannot inflate the denominator of a rational by more than its degree. (Contributed by Stefan O'Rear, 12-Nov-2014)

Ref Expression
Hypotheses aalioulem1.a φ F Poly
aalioulem1.b φ X
aalioulem1.c φ Y
Assertion aalioulem1 φ F X Y Y deg F

Proof

Step Hyp Ref Expression
1 aalioulem1.a φ F Poly
2 aalioulem1.b φ X
3 aalioulem1.c φ Y
4 2 zcnd φ X
5 3 nncnd φ Y
6 3 nnne0d φ Y 0
7 4 5 6 divcld φ X Y
8 eqid coeff F = coeff F
9 eqid deg F = deg F
10 8 9 coeid2 F Poly X Y F X Y = a = 0 deg F coeff F a X Y a
11 1 7 10 syl2anc φ F X Y = a = 0 deg F coeff F a X Y a
12 11 oveq1d φ F X Y Y deg F = a = 0 deg F coeff F a X Y a Y deg F
13 fzfid φ 0 deg F Fin
14 dgrcl F Poly deg F 0
15 1 14 syl φ deg F 0
16 5 15 expcld φ Y deg F
17 0z 0
18 8 coef2 F Poly 0 coeff F : 0
19 1 17 18 sylancl φ coeff F : 0
20 elfznn0 a 0 deg F a 0
21 ffvelrn coeff F : 0 a 0 coeff F a
22 19 20 21 syl2an φ a 0 deg F coeff F a
23 22 zcnd φ a 0 deg F coeff F a
24 expcl X Y a 0 X Y a
25 7 20 24 syl2an φ a 0 deg F X Y a
26 23 25 mulcld φ a 0 deg F coeff F a X Y a
27 13 16 26 fsummulc1 φ a = 0 deg F coeff F a X Y a Y deg F = a = 0 deg F coeff F a X Y a Y deg F
28 12 27 eqtrd φ F X Y Y deg F = a = 0 deg F coeff F a X Y a Y deg F
29 5 adantr φ a 0 deg F Y
30 15 adantr φ a 0 deg F deg F 0
31 29 30 expcld φ a 0 deg F Y deg F
32 23 25 31 mulassd φ a 0 deg F coeff F a X Y a Y deg F = coeff F a X Y a Y deg F
33 2 adantr φ a 0 deg F X
34 33 zcnd φ a 0 deg F X
35 6 adantr φ a 0 deg F Y 0
36 20 adantl φ a 0 deg F a 0
37 34 29 35 36 expdivd φ a 0 deg F X Y a = X a Y a
38 37 oveq1d φ a 0 deg F X Y a Y deg F = X a Y a Y deg F
39 34 36 expcld φ a 0 deg F X a
40 nnexpcl Y a 0 Y a
41 3 20 40 syl2an φ a 0 deg F Y a
42 41 nncnd φ a 0 deg F Y a
43 41 nnne0d φ a 0 deg F Y a 0
44 39 42 31 43 div13d φ a 0 deg F X a Y a Y deg F = Y deg F Y a X a
45 38 44 eqtrd φ a 0 deg F X Y a Y deg F = Y deg F Y a X a
46 elfzelz a 0 deg F a
47 46 adantl φ a 0 deg F a
48 30 nn0zd φ a 0 deg F deg F
49 29 35 47 48 expsubd φ a 0 deg F Y deg F a = Y deg F Y a
50 3 adantr φ a 0 deg F Y
51 50 nnzd φ a 0 deg F Y
52 fznn0sub a 0 deg F deg F a 0
53 52 adantl φ a 0 deg F deg F a 0
54 zexpcl Y deg F a 0 Y deg F a
55 51 53 54 syl2anc φ a 0 deg F Y deg F a
56 49 55 eqeltrrd φ a 0 deg F Y deg F Y a
57 zexpcl X a 0 X a
58 2 20 57 syl2an φ a 0 deg F X a
59 56 58 zmulcld φ a 0 deg F Y deg F Y a X a
60 45 59 eqeltrd φ a 0 deg F X Y a Y deg F
61 22 60 zmulcld φ a 0 deg F coeff F a X Y a Y deg F
62 32 61 eqeltrd φ a 0 deg F coeff F a X Y a Y deg F
63 13 62 fsumzcl φ a = 0 deg F coeff F a X Y a Y deg F
64 28 63 eqeltrd φ F X Y Y deg F