Metamath Proof Explorer


Theorem aalioulem1

Description: Lemma for aaliou . An integer polynomial cannot inflate the denominator of a rational by more than its degree. (Contributed by Stefan O'Rear, 12-Nov-2014)

Ref Expression
Hypotheses aalioulem1.a φFPoly
aalioulem1.b φX
aalioulem1.c φY
Assertion aalioulem1 φFXYYdegF

Proof

Step Hyp Ref Expression
1 aalioulem1.a φFPoly
2 aalioulem1.b φX
3 aalioulem1.c φY
4 2 zcnd φX
5 3 nncnd φY
6 3 nnne0d φY0
7 4 5 6 divcld φXY
8 eqid coeffF=coeffF
9 eqid degF=degF
10 8 9 coeid2 FPolyXYFXY=a=0degFcoeffFaXYa
11 1 7 10 syl2anc φFXY=a=0degFcoeffFaXYa
12 11 oveq1d φFXYYdegF=a=0degFcoeffFaXYaYdegF
13 fzfid φ0degFFin
14 dgrcl FPolydegF0
15 1 14 syl φdegF0
16 5 15 expcld φYdegF
17 0z 0
18 8 coef2 FPoly0coeffF:0
19 1 17 18 sylancl φcoeffF:0
20 elfznn0 a0degFa0
21 ffvelcdm coeffF:0a0coeffFa
22 19 20 21 syl2an φa0degFcoeffFa
23 22 zcnd φa0degFcoeffFa
24 expcl XYa0XYa
25 7 20 24 syl2an φa0degFXYa
26 23 25 mulcld φa0degFcoeffFaXYa
27 13 16 26 fsummulc1 φa=0degFcoeffFaXYaYdegF=a=0degFcoeffFaXYaYdegF
28 12 27 eqtrd φFXYYdegF=a=0degFcoeffFaXYaYdegF
29 5 adantr φa0degFY
30 15 adantr φa0degFdegF0
31 29 30 expcld φa0degFYdegF
32 23 25 31 mulassd φa0degFcoeffFaXYaYdegF=coeffFaXYaYdegF
33 2 adantr φa0degFX
34 33 zcnd φa0degFX
35 6 adantr φa0degFY0
36 20 adantl φa0degFa0
37 34 29 35 36 expdivd φa0degFXYa=XaYa
38 37 oveq1d φa0degFXYaYdegF=XaYaYdegF
39 34 36 expcld φa0degFXa
40 nnexpcl Ya0Ya
41 3 20 40 syl2an φa0degFYa
42 41 nncnd φa0degFYa
43 41 nnne0d φa0degFYa0
44 39 42 31 43 div13d φa0degFXaYaYdegF=YdegFYaXa
45 38 44 eqtrd φa0degFXYaYdegF=YdegFYaXa
46 elfzelz a0degFa
47 46 adantl φa0degFa
48 30 nn0zd φa0degFdegF
49 29 35 47 48 expsubd φa0degFYdegFa=YdegFYa
50 3 adantr φa0degFY
51 50 nnzd φa0degFY
52 fznn0sub a0degFdegFa0
53 52 adantl φa0degFdegFa0
54 zexpcl YdegFa0YdegFa
55 51 53 54 syl2anc φa0degFYdegFa
56 49 55 eqeltrrd φa0degFYdegFYa
57 zexpcl Xa0Xa
58 2 20 57 syl2an φa0degFXa
59 56 58 zmulcld φa0degFYdegFYaXa
60 45 59 eqeltrd φa0degFXYaYdegF
61 22 60 zmulcld φa0degFcoeffFaXYaYdegF
62 32 61 eqeltrd φa0degFcoeffFaXYaYdegF
63 13 62 fsumzcl φa=0degFcoeffFaXYaYdegF
64 28 63 eqeltrd φFXYYdegF