Description: Lemma for aaliou . An integer polynomial cannot inflate the denominator of a rational by more than its degree. (Contributed by Stefan O'Rear, 12-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | aalioulem1.a | |
|
aalioulem1.b | |
||
aalioulem1.c | |
||
Assertion | aalioulem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aalioulem1.a | |
|
2 | aalioulem1.b | |
|
3 | aalioulem1.c | |
|
4 | 2 | zcnd | |
5 | 3 | nncnd | |
6 | 3 | nnne0d | |
7 | 4 5 6 | divcld | |
8 | eqid | |
|
9 | eqid | |
|
10 | 8 9 | coeid2 | |
11 | 1 7 10 | syl2anc | |
12 | 11 | oveq1d | |
13 | fzfid | |
|
14 | dgrcl | |
|
15 | 1 14 | syl | |
16 | 5 15 | expcld | |
17 | 0z | |
|
18 | 8 | coef2 | |
19 | 1 17 18 | sylancl | |
20 | elfznn0 | |
|
21 | ffvelcdm | |
|
22 | 19 20 21 | syl2an | |
23 | 22 | zcnd | |
24 | expcl | |
|
25 | 7 20 24 | syl2an | |
26 | 23 25 | mulcld | |
27 | 13 16 26 | fsummulc1 | |
28 | 12 27 | eqtrd | |
29 | 5 | adantr | |
30 | 15 | adantr | |
31 | 29 30 | expcld | |
32 | 23 25 31 | mulassd | |
33 | 2 | adantr | |
34 | 33 | zcnd | |
35 | 6 | adantr | |
36 | 20 | adantl | |
37 | 34 29 35 36 | expdivd | |
38 | 37 | oveq1d | |
39 | 34 36 | expcld | |
40 | nnexpcl | |
|
41 | 3 20 40 | syl2an | |
42 | 41 | nncnd | |
43 | 41 | nnne0d | |
44 | 39 42 31 43 | div13d | |
45 | 38 44 | eqtrd | |
46 | elfzelz | |
|
47 | 46 | adantl | |
48 | 30 | nn0zd | |
49 | 29 35 47 48 | expsubd | |
50 | 3 | adantr | |
51 | 50 | nnzd | |
52 | fznn0sub | |
|
53 | 52 | adantl | |
54 | zexpcl | |
|
55 | 51 53 54 | syl2anc | |
56 | 49 55 | eqeltrrd | |
57 | zexpcl | |
|
58 | 2 20 57 | syl2an | |
59 | 56 58 | zmulcld | |
60 | 45 59 | eqeltrd | |
61 | 22 60 | zmulcld | |
62 | 32 61 | eqeltrd | |
63 | 13 62 | fsumzcl | |
64 | 28 63 | eqeltrd | |