Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Relations and Functions
Functions - misc additions
aciunf1lem
Next ⟩
aciunf1
Metamath Proof Explorer
Ascii
Unicode
Theorem
aciunf1lem
Description:
Choice in an index union.
(Contributed by
Thierry Arnoux
, 8-Nov-2019)
Ref
Expression
Hypotheses
acunirnmpt.0
⊢
φ
→
A
∈
V
acunirnmpt.1
⊢
φ
∧
j
∈
A
→
B
≠
∅
aciunf1lem.a
⊢
Ⅎ
_
j
A
aciunf1lem.1
⊢
φ
∧
j
∈
A
→
B
∈
W
Assertion
aciunf1lem
⊢
φ
→
∃
f
f
:
⋃
j
∈
A
B
⟶
1-1
⋃
j
∈
A
j
×
B
∧
∀
x
∈
⋃
j
∈
A
B
2
nd
f
x
=
x
Proof
Step
Hyp
Ref
Expression
1
acunirnmpt.0
⊢
φ
→
A
∈
V
2
acunirnmpt.1
⊢
φ
∧
j
∈
A
→
B
≠
∅
3
aciunf1lem.a
⊢
Ⅎ
_
j
A
4
aciunf1lem.1
⊢
φ
∧
j
∈
A
→
B
∈
W
5
nfiu1
⊢
Ⅎ
_
j
⋃
j
∈
A
B
6
nfcsb1v
⦋
⦌
⊢
Ⅎ
_
j
⦋
g
x
/
j
⦌
B
7
eqid
⊢
⋃
j
∈
A
B
=
⋃
j
∈
A
B
8
csbeq1a
⦋
⦌
⊢
j
=
g
x
→
B
=
⦋
g
x
/
j
⦌
B
9
1
2
3
5
6
7
8
4
acunirnmpt2f
⦋
⦌
⊢
φ
→
∃
g
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
10
nfv
⊢
Ⅎ
x
φ
11
nfv
⊢
Ⅎ
x
g
:
⋃
j
∈
A
B
⟶
A
12
nfra1
⦋
⦌
⊢
Ⅎ
x
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
13
11
12
nfan
⦋
⦌
⊢
Ⅎ
x
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
14
10
13
nfan
⦋
⦌
⊢
Ⅎ
x
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
15
nfv
⊢
Ⅎ
j
φ
16
nfcv
⊢
Ⅎ
_
j
g
17
16
5
3
nff
⊢
Ⅎ
j
g
:
⋃
j
∈
A
B
⟶
A
18
nfcv
⊢
Ⅎ
_
j
x
19
18
6
nfel
⦋
⦌
⊢
Ⅎ
j
x
∈
⦋
g
x
/
j
⦌
B
20
5
19
nfralw
⦋
⦌
⊢
Ⅎ
j
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
21
17
20
nfan
⦋
⦌
⊢
Ⅎ
j
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
22
15
21
nfan
⦋
⦌
⊢
Ⅎ
j
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
23
18
5
nfel
⊢
Ⅎ
j
x
∈
⋃
j
∈
A
B
24
22
23
nfan
⦋
⦌
⊢
Ⅎ
j
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
∧
x
∈
⋃
j
∈
A
B
25
nfcv
⊢
Ⅎ
_
j
g
x
x
26
nfiu1
⊢
Ⅎ
_
j
⋃
j
∈
A
j
×
B
27
25
26
nfel
⊢
Ⅎ
j
g
x
x
∈
⋃
j
∈
A
j
×
B
28
simplr
⦋
⦌
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
∧
x
∈
⋃
j
∈
A
B
→
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
29
28
simpld
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
∧
x
∈
⋃
j
∈
A
B
→
g
:
⋃
j
∈
A
B
⟶
A
30
29
ad2antrr
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
∧
x
∈
⋃
j
∈
A
B
∧
j
∈
A
∧
x
∈
B
→
g
:
⋃
j
∈
A
B
⟶
A
31
simpllr
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
∧
x
∈
⋃
j
∈
A
B
∧
j
∈
A
∧
x
∈
B
→
x
∈
⋃
j
∈
A
B
32
30
31
ffvelcdmd
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
∧
x
∈
⋃
j
∈
A
B
∧
j
∈
A
∧
x
∈
B
→
g
x
∈
A
33
fvex
⊢
g
x
∈
V
34
33
snid
⊢
g
x
∈
g
x
35
34
a1i
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
∧
x
∈
⋃
j
∈
A
B
∧
j
∈
A
∧
x
∈
B
→
g
x
∈
g
x
36
28
simprd
⦋
⦌
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
∧
x
∈
⋃
j
∈
A
B
→
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
37
simpr
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
∧
x
∈
⋃
j
∈
A
B
→
x
∈
⋃
j
∈
A
B
38
rsp
⦋
⦌
⦋
⦌
⊢
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
→
x
∈
⋃
j
∈
A
B
→
x
∈
⦋
g
x
/
j
⦌
B
39
36
37
38
sylc
⦋
⦌
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
∧
x
∈
⋃
j
∈
A
B
→
x
∈
⦋
g
x
/
j
⦌
B
40
39
ad2antrr
⦋
⦌
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
∧
x
∈
⋃
j
∈
A
B
∧
j
∈
A
∧
x
∈
B
→
x
∈
⦋
g
x
/
j
⦌
B
41
35
40
jca
⦋
⦌
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
∧
x
∈
⋃
j
∈
A
B
∧
j
∈
A
∧
x
∈
B
→
g
x
∈
g
x
∧
x
∈
⦋
g
x
/
j
⦌
B
42
opelxp
⦋
⦌
⦋
⦌
⊢
g
x
x
∈
g
x
×
⦋
g
x
/
j
⦌
B
↔
g
x
∈
g
x
∧
x
∈
⦋
g
x
/
j
⦌
B
43
41
42
sylibr
⦋
⦌
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
∧
x
∈
⋃
j
∈
A
B
∧
j
∈
A
∧
x
∈
B
→
g
x
x
∈
g
x
×
⦋
g
x
/
j
⦌
B
44
sneq
⊢
k
=
g
x
→
k
=
g
x
45
csbeq1
⦋
⦌
⦋
⦌
⊢
k
=
g
x
→
⦋
k
/
j
⦌
B
=
⦋
g
x
/
j
⦌
B
46
44
45
xpeq12d
⦋
⦌
⦋
⦌
⊢
k
=
g
x
→
k
×
⦋
k
/
j
⦌
B
=
g
x
×
⦋
g
x
/
j
⦌
B
47
46
eleq2d
⦋
⦌
⦋
⦌
⊢
k
=
g
x
→
g
x
x
∈
k
×
⦋
k
/
j
⦌
B
↔
g
x
x
∈
g
x
×
⦋
g
x
/
j
⦌
B
48
47
rspcev
⦋
⦌
⦋
⦌
⊢
g
x
∈
A
∧
g
x
x
∈
g
x
×
⦋
g
x
/
j
⦌
B
→
∃
k
∈
A
g
x
x
∈
k
×
⦋
k
/
j
⦌
B
49
32
43
48
syl2anc
⦋
⦌
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
∧
x
∈
⋃
j
∈
A
B
∧
j
∈
A
∧
x
∈
B
→
∃
k
∈
A
g
x
x
∈
k
×
⦋
k
/
j
⦌
B
50
eliun
⊢
g
x
x
∈
⋃
j
∈
A
j
×
B
↔
∃
j
∈
A
g
x
x
∈
j
×
B
51
nfcv
⊢
Ⅎ
_
k
A
52
nfv
⊢
Ⅎ
k
g
x
x
∈
j
×
B
53
nfcv
⊢
Ⅎ
_
j
k
54
nfcsb1v
⦋
⦌
⊢
Ⅎ
_
j
⦋
k
/
j
⦌
B
55
53
54
nfxp
⦋
⦌
⊢
Ⅎ
_
j
k
×
⦋
k
/
j
⦌
B
56
25
55
nfel
⦋
⦌
⊢
Ⅎ
j
g
x
x
∈
k
×
⦋
k
/
j
⦌
B
57
sneq
⊢
j
=
k
→
j
=
k
58
csbeq1a
⦋
⦌
⊢
j
=
k
→
B
=
⦋
k
/
j
⦌
B
59
57
58
xpeq12d
⦋
⦌
⊢
j
=
k
→
j
×
B
=
k
×
⦋
k
/
j
⦌
B
60
59
eleq2d
⦋
⦌
⊢
j
=
k
→
g
x
x
∈
j
×
B
↔
g
x
x
∈
k
×
⦋
k
/
j
⦌
B
61
3
51
52
56
60
cbvrexfw
⦋
⦌
⊢
∃
j
∈
A
g
x
x
∈
j
×
B
↔
∃
k
∈
A
g
x
x
∈
k
×
⦋
k
/
j
⦌
B
62
50
61
bitri
⦋
⦌
⊢
g
x
x
∈
⋃
j
∈
A
j
×
B
↔
∃
k
∈
A
g
x
x
∈
k
×
⦋
k
/
j
⦌
B
63
49
62
sylibr
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
∧
x
∈
⋃
j
∈
A
B
∧
j
∈
A
∧
x
∈
B
→
g
x
x
∈
⋃
j
∈
A
j
×
B
64
eliun
⊢
x
∈
⋃
j
∈
A
B
↔
∃
j
∈
A
x
∈
B
65
64
biimpi
⊢
x
∈
⋃
j
∈
A
B
→
∃
j
∈
A
x
∈
B
66
65
adantl
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
∧
x
∈
⋃
j
∈
A
B
→
∃
j
∈
A
x
∈
B
67
24
27
63
66
r19.29af2
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
∧
x
∈
⋃
j
∈
A
B
→
g
x
x
∈
⋃
j
∈
A
j
×
B
68
67
ex
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
→
x
∈
⋃
j
∈
A
B
→
g
x
x
∈
⋃
j
∈
A
j
×
B
69
14
68
ralrimi
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
→
∀
x
∈
⋃
j
∈
A
B
g
x
x
∈
⋃
j
∈
A
j
×
B
70
vex
⊢
x
∈
V
71
33
70
opth
⊢
g
x
x
=
g
y
y
↔
g
x
=
g
y
∧
x
=
y
72
71
simprbi
⊢
g
x
x
=
g
y
y
→
x
=
y
73
72
rgen2w
⊢
∀
x
∈
⋃
j
∈
A
B
∀
y
∈
⋃
j
∈
A
B
g
x
x
=
g
y
y
→
x
=
y
74
73
a1i
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
→
∀
x
∈
⋃
j
∈
A
B
∀
y
∈
⋃
j
∈
A
B
g
x
x
=
g
y
y
→
x
=
y
75
69
74
jca
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
→
∀
x
∈
⋃
j
∈
A
B
g
x
x
∈
⋃
j
∈
A
j
×
B
∧
∀
x
∈
⋃
j
∈
A
B
∀
y
∈
⋃
j
∈
A
B
g
x
x
=
g
y
y
→
x
=
y
76
eqid
⊢
x
∈
⋃
j
∈
A
B
⟼
g
x
x
=
x
∈
⋃
j
∈
A
B
⟼
g
x
x
77
fveq2
⊢
x
=
y
→
g
x
=
g
y
78
id
⊢
x
=
y
→
x
=
y
79
77
78
opeq12d
⊢
x
=
y
→
g
x
x
=
g
y
y
80
76
79
f1mpt
⊢
x
∈
⋃
j
∈
A
B
⟼
g
x
x
:
⋃
j
∈
A
B
⟶
1-1
⋃
j
∈
A
j
×
B
↔
∀
x
∈
⋃
j
∈
A
B
g
x
x
∈
⋃
j
∈
A
j
×
B
∧
∀
x
∈
⋃
j
∈
A
B
∀
y
∈
⋃
j
∈
A
B
g
x
x
=
g
y
y
→
x
=
y
81
75
80
sylibr
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
→
x
∈
⋃
j
∈
A
B
⟼
g
x
x
:
⋃
j
∈
A
B
⟶
1-1
⋃
j
∈
A
j
×
B
82
opex
⊢
g
x
x
∈
V
83
76
fvmpt2
⊢
x
∈
⋃
j
∈
A
B
∧
g
x
x
∈
V
→
x
∈
⋃
j
∈
A
B
⟼
g
x
x
x
=
g
x
x
84
82
83
mpan2
⊢
x
∈
⋃
j
∈
A
B
→
x
∈
⋃
j
∈
A
B
⟼
g
x
x
x
=
g
x
x
85
37
84
syl
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
∧
x
∈
⋃
j
∈
A
B
→
x
∈
⋃
j
∈
A
B
⟼
g
x
x
x
=
g
x
x
86
85
fveq2d
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
∧
x
∈
⋃
j
∈
A
B
→
2
nd
x
∈
⋃
j
∈
A
B
⟼
g
x
x
x
=
2
nd
g
x
x
87
33
70
op2nd
⊢
2
nd
g
x
x
=
x
88
86
87
eqtrdi
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
∧
x
∈
⋃
j
∈
A
B
→
2
nd
x
∈
⋃
j
∈
A
B
⟼
g
x
x
x
=
x
89
88
ex
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
→
x
∈
⋃
j
∈
A
B
→
2
nd
x
∈
⋃
j
∈
A
B
⟼
g
x
x
x
=
x
90
14
89
ralrimi
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
→
∀
x
∈
⋃
j
∈
A
B
2
nd
x
∈
⋃
j
∈
A
B
⟼
g
x
x
x
=
x
91
81
90
jca
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
→
x
∈
⋃
j
∈
A
B
⟼
g
x
x
:
⋃
j
∈
A
B
⟶
1-1
⋃
j
∈
A
j
×
B
∧
∀
x
∈
⋃
j
∈
A
B
2
nd
x
∈
⋃
j
∈
A
B
⟼
g
x
x
x
=
x
92
nfcv
⊢
Ⅎ
_
j
k
93
92
3
nfel
⊢
Ⅎ
j
k
∈
A
94
15
93
nfan
⊢
Ⅎ
j
φ
∧
k
∈
A
95
nfcv
⊢
Ⅎ
_
j
W
96
54
95
nfel
⦋
⦌
⊢
Ⅎ
j
⦋
k
/
j
⦌
B
∈
W
97
94
96
nfim
⦋
⦌
⊢
Ⅎ
j
φ
∧
k
∈
A
→
⦋
k
/
j
⦌
B
∈
W
98
eleq1w
⊢
j
=
k
→
j
∈
A
↔
k
∈
A
99
98
anbi2d
⊢
j
=
k
→
φ
∧
j
∈
A
↔
φ
∧
k
∈
A
100
58
eleq1d
⦋
⦌
⊢
j
=
k
→
B
∈
W
↔
⦋
k
/
j
⦌
B
∈
W
101
99
100
imbi12d
⦋
⦌
⊢
j
=
k
→
φ
∧
j
∈
A
→
B
∈
W
↔
φ
∧
k
∈
A
→
⦋
k
/
j
⦌
B
∈
W
102
97
101
4
chvarfv
⦋
⦌
⊢
φ
∧
k
∈
A
→
⦋
k
/
j
⦌
B
∈
W
103
102
ralrimiva
⦋
⦌
⊢
φ
→
∀
k
∈
A
⦋
k
/
j
⦌
B
∈
W
104
nfcv
⊢
Ⅎ
_
k
B
105
3
51
104
54
58
cbviunf
⦋
⦌
⊢
⋃
j
∈
A
B
=
⋃
k
∈
A
⦋
k
/
j
⦌
B
106
iunexg
⦋
⦌
⦋
⦌
⊢
A
∈
V
∧
∀
k
∈
A
⦋
k
/
j
⦌
B
∈
W
→
⋃
k
∈
A
⦋
k
/
j
⦌
B
∈
V
107
105
106
eqeltrid
⦋
⦌
⊢
A
∈
V
∧
∀
k
∈
A
⦋
k
/
j
⦌
B
∈
W
→
⋃
j
∈
A
B
∈
V
108
1
103
107
syl2anc
⊢
φ
→
⋃
j
∈
A
B
∈
V
109
mptexg
⊢
⋃
j
∈
A
B
∈
V
→
x
∈
⋃
j
∈
A
B
⟼
g
x
x
∈
V
110
f1eq1
⊢
f
=
x
∈
⋃
j
∈
A
B
⟼
g
x
x
→
f
:
⋃
j
∈
A
B
⟶
1-1
⋃
j
∈
A
j
×
B
↔
x
∈
⋃
j
∈
A
B
⟼
g
x
x
:
⋃
j
∈
A
B
⟶
1-1
⋃
j
∈
A
j
×
B
111
nfcv
⊢
Ⅎ
_
x
f
112
nfmpt1
⊢
Ⅎ
_
x
x
∈
⋃
j
∈
A
B
⟼
g
x
x
113
111
112
nfeq
⊢
Ⅎ
x
f
=
x
∈
⋃
j
∈
A
B
⟼
g
x
x
114
fveq1
⊢
f
=
x
∈
⋃
j
∈
A
B
⟼
g
x
x
→
f
x
=
x
∈
⋃
j
∈
A
B
⟼
g
x
x
x
115
114
fveqeq2d
⊢
f
=
x
∈
⋃
j
∈
A
B
⟼
g
x
x
→
2
nd
f
x
=
x
↔
2
nd
x
∈
⋃
j
∈
A
B
⟼
g
x
x
x
=
x
116
113
115
ralbid
⊢
f
=
x
∈
⋃
j
∈
A
B
⟼
g
x
x
→
∀
x
∈
⋃
j
∈
A
B
2
nd
f
x
=
x
↔
∀
x
∈
⋃
j
∈
A
B
2
nd
x
∈
⋃
j
∈
A
B
⟼
g
x
x
x
=
x
117
110
116
anbi12d
⊢
f
=
x
∈
⋃
j
∈
A
B
⟼
g
x
x
→
f
:
⋃
j
∈
A
B
⟶
1-1
⋃
j
∈
A
j
×
B
∧
∀
x
∈
⋃
j
∈
A
B
2
nd
f
x
=
x
↔
x
∈
⋃
j
∈
A
B
⟼
g
x
x
:
⋃
j
∈
A
B
⟶
1-1
⋃
j
∈
A
j
×
B
∧
∀
x
∈
⋃
j
∈
A
B
2
nd
x
∈
⋃
j
∈
A
B
⟼
g
x
x
x
=
x
118
117
spcegv
⊢
x
∈
⋃
j
∈
A
B
⟼
g
x
x
∈
V
→
x
∈
⋃
j
∈
A
B
⟼
g
x
x
:
⋃
j
∈
A
B
⟶
1-1
⋃
j
∈
A
j
×
B
∧
∀
x
∈
⋃
j
∈
A
B
2
nd
x
∈
⋃
j
∈
A
B
⟼
g
x
x
x
=
x
→
∃
f
f
:
⋃
j
∈
A
B
⟶
1-1
⋃
j
∈
A
j
×
B
∧
∀
x
∈
⋃
j
∈
A
B
2
nd
f
x
=
x
119
108
109
118
3syl
⊢
φ
→
x
∈
⋃
j
∈
A
B
⟼
g
x
x
:
⋃
j
∈
A
B
⟶
1-1
⋃
j
∈
A
j
×
B
∧
∀
x
∈
⋃
j
∈
A
B
2
nd
x
∈
⋃
j
∈
A
B
⟼
g
x
x
x
=
x
→
∃
f
f
:
⋃
j
∈
A
B
⟶
1-1
⋃
j
∈
A
j
×
B
∧
∀
x
∈
⋃
j
∈
A
B
2
nd
f
x
=
x
120
119
adantr
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
→
x
∈
⋃
j
∈
A
B
⟼
g
x
x
:
⋃
j
∈
A
B
⟶
1-1
⋃
j
∈
A
j
×
B
∧
∀
x
∈
⋃
j
∈
A
B
2
nd
x
∈
⋃
j
∈
A
B
⟼
g
x
x
x
=
x
→
∃
f
f
:
⋃
j
∈
A
B
⟶
1-1
⋃
j
∈
A
j
×
B
∧
∀
x
∈
⋃
j
∈
A
B
2
nd
f
x
=
x
121
91
120
mpd
⦋
⦌
⊢
φ
∧
g
:
⋃
j
∈
A
B
⟶
A
∧
∀
x
∈
⋃
j
∈
A
B
x
∈
⦋
g
x
/
j
⦌
B
→
∃
f
f
:
⋃
j
∈
A
B
⟶
1-1
⋃
j
∈
A
j
×
B
∧
∀
x
∈
⋃
j
∈
A
B
2
nd
f
x
=
x
122
9
121
exlimddv
⊢
φ
→
∃
f
f
:
⋃
j
∈
A
B
⟶
1-1
⋃
j
∈
A
j
×
B
∧
∀
x
∈
⋃
j
∈
A
B
2
nd
f
x
=
x