Metamath Proof Explorer


Theorem aciunf1lem

Description: Choice in an index union. (Contributed by Thierry Arnoux, 8-Nov-2019)

Ref Expression
Hypotheses acunirnmpt.0 φAV
acunirnmpt.1 φjAB
aciunf1lem.a _jA
aciunf1lem.1 φjABW
Assertion aciunf1lem φff:jAB1-1jAj×BxjAB2ndfx=x

Proof

Step Hyp Ref Expression
1 acunirnmpt.0 φAV
2 acunirnmpt.1 φjAB
3 aciunf1lem.a _jA
4 aciunf1lem.1 φjABW
5 nfiu1 _jjAB
6 nfcsb1v _jgx/jB
7 eqid jAB=jAB
8 csbeq1a j=gxB=gx/jB
9 1 2 3 5 6 7 8 4 acunirnmpt2f φgg:jABAxjABxgx/jB
10 nfv xφ
11 nfv xg:jABA
12 nfra1 xxjABxgx/jB
13 11 12 nfan xg:jABAxjABxgx/jB
14 10 13 nfan xφg:jABAxjABxgx/jB
15 nfv jφ
16 nfcv _jg
17 16 5 3 nff jg:jABA
18 nfcv _jx
19 18 6 nfel jxgx/jB
20 5 19 nfralw jxjABxgx/jB
21 17 20 nfan jg:jABAxjABxgx/jB
22 15 21 nfan jφg:jABAxjABxgx/jB
23 18 5 nfel jxjAB
24 22 23 nfan jφg:jABAxjABxgx/jBxjAB
25 nfcv _jgxx
26 nfiu1 _jjAj×B
27 25 26 nfel jgxxjAj×B
28 simplr φg:jABAxjABxgx/jBxjABg:jABAxjABxgx/jB
29 28 simpld φg:jABAxjABxgx/jBxjABg:jABA
30 29 ad2antrr φg:jABAxjABxgx/jBxjABjAxBg:jABA
31 simpllr φg:jABAxjABxgx/jBxjABjAxBxjAB
32 30 31 ffvelcdmd φg:jABAxjABxgx/jBxjABjAxBgxA
33 fvex gxV
34 33 snid gxgx
35 34 a1i φg:jABAxjABxgx/jBxjABjAxBgxgx
36 28 simprd φg:jABAxjABxgx/jBxjABxjABxgx/jB
37 simpr φg:jABAxjABxgx/jBxjABxjAB
38 rsp xjABxgx/jBxjABxgx/jB
39 36 37 38 sylc φg:jABAxjABxgx/jBxjABxgx/jB
40 39 ad2antrr φg:jABAxjABxgx/jBxjABjAxBxgx/jB
41 35 40 jca φg:jABAxjABxgx/jBxjABjAxBgxgxxgx/jB
42 opelxp gxxgx×gx/jBgxgxxgx/jB
43 41 42 sylibr φg:jABAxjABxgx/jBxjABjAxBgxxgx×gx/jB
44 sneq k=gxk=gx
45 csbeq1 k=gxk/jB=gx/jB
46 44 45 xpeq12d k=gxk×k/jB=gx×gx/jB
47 46 eleq2d k=gxgxxk×k/jBgxxgx×gx/jB
48 47 rspcev gxAgxxgx×gx/jBkAgxxk×k/jB
49 32 43 48 syl2anc φg:jABAxjABxgx/jBxjABjAxBkAgxxk×k/jB
50 eliun gxxjAj×BjAgxxj×B
51 nfcv _kA
52 nfv kgxxj×B
53 nfcv _jk
54 nfcsb1v _jk/jB
55 53 54 nfxp _jk×k/jB
56 25 55 nfel jgxxk×k/jB
57 sneq j=kj=k
58 csbeq1a j=kB=k/jB
59 57 58 xpeq12d j=kj×B=k×k/jB
60 59 eleq2d j=kgxxj×Bgxxk×k/jB
61 3 51 52 56 60 cbvrexfw jAgxxj×BkAgxxk×k/jB
62 50 61 bitri gxxjAj×BkAgxxk×k/jB
63 49 62 sylibr φg:jABAxjABxgx/jBxjABjAxBgxxjAj×B
64 eliun xjABjAxB
65 64 biimpi xjABjAxB
66 65 adantl φg:jABAxjABxgx/jBxjABjAxB
67 24 27 63 66 r19.29af2 φg:jABAxjABxgx/jBxjABgxxjAj×B
68 67 ex φg:jABAxjABxgx/jBxjABgxxjAj×B
69 14 68 ralrimi φg:jABAxjABxgx/jBxjABgxxjAj×B
70 vex xV
71 33 70 opth gxx=gyygx=gyx=y
72 71 simprbi gxx=gyyx=y
73 72 rgen2w xjAByjABgxx=gyyx=y
74 73 a1i φg:jABAxjABxgx/jBxjAByjABgxx=gyyx=y
75 69 74 jca φg:jABAxjABxgx/jBxjABgxxjAj×BxjAByjABgxx=gyyx=y
76 eqid xjABgxx=xjABgxx
77 fveq2 x=ygx=gy
78 id x=yx=y
79 77 78 opeq12d x=ygxx=gyy
80 76 79 f1mpt xjABgxx:jAB1-1jAj×BxjABgxxjAj×BxjAByjABgxx=gyyx=y
81 75 80 sylibr φg:jABAxjABxgx/jBxjABgxx:jAB1-1jAj×B
82 opex gxxV
83 76 fvmpt2 xjABgxxVxjABgxxx=gxx
84 82 83 mpan2 xjABxjABgxxx=gxx
85 37 84 syl φg:jABAxjABxgx/jBxjABxjABgxxx=gxx
86 85 fveq2d φg:jABAxjABxgx/jBxjAB2ndxjABgxxx=2ndgxx
87 33 70 op2nd 2ndgxx=x
88 86 87 eqtrdi φg:jABAxjABxgx/jBxjAB2ndxjABgxxx=x
89 88 ex φg:jABAxjABxgx/jBxjAB2ndxjABgxxx=x
90 14 89 ralrimi φg:jABAxjABxgx/jBxjAB2ndxjABgxxx=x
91 81 90 jca φg:jABAxjABxgx/jBxjABgxx:jAB1-1jAj×BxjAB2ndxjABgxxx=x
92 nfcv _jk
93 92 3 nfel jkA
94 15 93 nfan jφkA
95 nfcv _jW
96 54 95 nfel jk/jBW
97 94 96 nfim jφkAk/jBW
98 eleq1w j=kjAkA
99 98 anbi2d j=kφjAφkA
100 58 eleq1d j=kBWk/jBW
101 99 100 imbi12d j=kφjABWφkAk/jBW
102 97 101 4 chvarfv φkAk/jBW
103 102 ralrimiva φkAk/jBW
104 nfcv _kB
105 3 51 104 54 58 cbviunf jAB=kAk/jB
106 iunexg AVkAk/jBWkAk/jBV
107 105 106 eqeltrid AVkAk/jBWjABV
108 1 103 107 syl2anc φjABV
109 mptexg jABVxjABgxxV
110 f1eq1 f=xjABgxxf:jAB1-1jAj×BxjABgxx:jAB1-1jAj×B
111 nfcv _xf
112 nfmpt1 _xxjABgxx
113 111 112 nfeq xf=xjABgxx
114 fveq1 f=xjABgxxfx=xjABgxxx
115 114 fveqeq2d f=xjABgxx2ndfx=x2ndxjABgxxx=x
116 113 115 ralbid f=xjABgxxxjAB2ndfx=xxjAB2ndxjABgxxx=x
117 110 116 anbi12d f=xjABgxxf:jAB1-1jAj×BxjAB2ndfx=xxjABgxx:jAB1-1jAj×BxjAB2ndxjABgxxx=x
118 117 spcegv xjABgxxVxjABgxx:jAB1-1jAj×BxjAB2ndxjABgxxx=xff:jAB1-1jAj×BxjAB2ndfx=x
119 108 109 118 3syl φxjABgxx:jAB1-1jAj×BxjAB2ndxjABgxxx=xff:jAB1-1jAj×BxjAB2ndfx=x
120 119 adantr φg:jABAxjABxgx/jBxjABgxx:jAB1-1jAj×BxjAB2ndxjABgxxx=xff:jAB1-1jAj×BxjAB2ndfx=x
121 91 120 mpd φg:jABAxjABxgx/jBff:jAB1-1jAj×BxjAB2ndfx=x
122 9 121 exlimddv φff:jAB1-1jAj×BxjAB2ndfx=x