Metamath Proof Explorer


Theorem acni2

Description: The property of being a choice set of length A . (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion acni2 XAC_AxABXBgg:AXxAgxB

Proof

Step Hyp Ref Expression
1 eldifsn B𝒫XB𝒫XB
2 elpw2g XAC_AB𝒫XBX
3 2 anbi1d XAC_AB𝒫XBBXB
4 1 3 bitrid XAC_AB𝒫XBXB
5 4 ralbidv XAC_AxAB𝒫XxABXB
6 5 biimpar XAC_AxABXBxAB𝒫X
7 eqid xAB=xAB
8 7 fmpt xAB𝒫XxAB:A𝒫X
9 6 8 sylib XAC_AxABXBxAB:A𝒫X
10 acni XAC_AxAB:A𝒫XfyAfyxABy
11 9 10 syldan XAC_AxABXBfyAfyxABy
12 nffvmpt1 _xxABy
13 12 nfel2 xfyxABy
14 nfv yfxxABx
15 fveq2 y=xfy=fx
16 fveq2 y=xxABy=xABx
17 15 16 eleq12d y=xfyxAByfxxABx
18 13 14 17 cbvralw yAfyxAByxAfxxABx
19 simplr XAC_AxABXBxAfxxABxxABXB
20 simplr XAC_AxABXxA
21 simpll XAC_AxABXXAC_A
22 simpr XAC_AxABXBX
23 21 22 ssexd XAC_AxABXBV
24 7 fvmpt2 xABVxABx=B
25 20 23 24 syl2anc XAC_AxABXxABx=B
26 25 eleq2d XAC_AxABXfxxABxfxB
27 26 ex XAC_AxABXfxxABxfxB
28 27 adantrd XAC_AxABXBfxxABxfxB
29 28 ralimdva XAC_AxABXBxAfxxABxfxB
30 29 imp XAC_AxABXBxAfxxABxfxB
31 ralbi xAfxxABxfxBxAfxxABxxAfxB
32 30 31 syl XAC_AxABXBxAfxxABxxAfxB
33 32 biimpa XAC_AxABXBxAfxxABxxAfxB
34 ssel BXfxBfxX
35 34 adantr BXBfxBfxX
36 35 ral2imi xABXBxAfxBxAfxX
37 19 33 36 sylc XAC_AxABXBxAfxxABxxAfxX
38 fveq2 x=yfx=fy
39 38 eleq1d x=yfxXfyX
40 39 rspccva xAfxXyAfyX
41 37 40 sylan XAC_AxABXBxAfxxABxyAfyX
42 41 fmpttd XAC_AxABXBxAfxxABxyAfy:AX
43 simpll XAC_AxABXBxAfxxABxXAC_A
44 acnrcl XAC_AAV
45 43 44 syl XAC_AxABXBxAfxxABxAV
46 fex2 yAfy:AXAVXAC_AyAfyV
47 42 45 43 46 syl3anc XAC_AxABXBxAfxxABxyAfyV
48 eqid yAfy=yAfy
49 fvex fxV
50 15 48 49 fvmpt xAyAfyx=fx
51 50 eleq1d xAyAfyxBfxB
52 51 ralbiia xAyAfyxBxAfxB
53 33 52 sylibr XAC_AxABXBxAfxxABxxAyAfyxB
54 42 53 jca XAC_AxABXBxAfxxABxyAfy:AXxAyAfyxB
55 feq1 g=yAfyg:AXyAfy:AX
56 fveq1 g=yAfygx=yAfyx
57 56 eleq1d g=yAfygxByAfyxB
58 57 ralbidv g=yAfyxAgxBxAyAfyxB
59 55 58 anbi12d g=yAfyg:AXxAgxByAfy:AXxAyAfyxB
60 47 54 59 spcedv XAC_AxABXBxAfxxABxgg:AXxAgxB
61 60 ex XAC_AxABXBxAfxxABxgg:AXxAgxB
62 18 61 biimtrid XAC_AxABXByAfyxABygg:AXxAgxB
63 62 exlimdv XAC_AxABXBfyAfyxABygg:AXxAgxB
64 11 63 mpd XAC_AxABXBgg:AXxAgxB