| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atantayl.1 |  | 
						
							| 2 |  | nnuz |  | 
						
							| 3 |  | 1zzd |  | 
						
							| 4 |  | ax-icn |  | 
						
							| 5 |  | halfcl |  | 
						
							| 6 | 4 5 | mp1i |  | 
						
							| 7 |  | simpl |  | 
						
							| 8 |  | mulcl |  | 
						
							| 9 | 4 7 8 | sylancr |  | 
						
							| 10 | 9 | negcld |  | 
						
							| 11 | 9 | absnegd |  | 
						
							| 12 |  | absmul |  | 
						
							| 13 | 4 7 12 | sylancr |  | 
						
							| 14 |  | absi |  | 
						
							| 15 | 14 | oveq1i |  | 
						
							| 16 |  | abscl |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 | 17 | recnd |  | 
						
							| 19 | 18 | mullidd |  | 
						
							| 20 | 15 19 | eqtrid |  | 
						
							| 21 | 11 13 20 | 3eqtrd |  | 
						
							| 22 |  | simpr |  | 
						
							| 23 | 21 22 | eqbrtrd |  | 
						
							| 24 |  | logtayl |  | 
						
							| 25 | 10 23 24 | syl2anc |  | 
						
							| 26 |  | ax-1cn |  | 
						
							| 27 |  | subneg |  | 
						
							| 28 | 26 9 27 | sylancr |  | 
						
							| 29 | 28 | fveq2d |  | 
						
							| 30 | 29 | negeqd |  | 
						
							| 31 | 25 30 | breqtrd |  | 
						
							| 32 |  | seqex |  | 
						
							| 33 | 32 | a1i |  | 
						
							| 34 | 11 23 | eqbrtrrd |  | 
						
							| 35 |  | logtayl |  | 
						
							| 36 | 9 34 35 | syl2anc |  | 
						
							| 37 |  | oveq2 |  | 
						
							| 38 |  | id |  | 
						
							| 39 | 37 38 | oveq12d |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 |  | ovex |  | 
						
							| 42 | 39 40 41 | fvmpt |  | 
						
							| 43 | 42 | adantl |  | 
						
							| 44 |  | nnnn0 |  | 
						
							| 45 |  | expcl |  | 
						
							| 46 | 10 44 45 | syl2an |  | 
						
							| 47 |  | nncn |  | 
						
							| 48 | 47 | adantl |  | 
						
							| 49 |  | nnne0 |  | 
						
							| 50 | 49 | adantl |  | 
						
							| 51 | 46 48 50 | divcld |  | 
						
							| 52 | 43 51 | eqeltrd |  | 
						
							| 53 | 2 3 52 | serf |  | 
						
							| 54 | 53 | ffvelcdmda |  | 
						
							| 55 |  | oveq2 |  | 
						
							| 56 | 55 38 | oveq12d |  | 
						
							| 57 |  | eqid |  | 
						
							| 58 |  | ovex |  | 
						
							| 59 | 56 57 58 | fvmpt |  | 
						
							| 60 | 59 | adantl |  | 
						
							| 61 |  | expcl |  | 
						
							| 62 | 9 44 61 | syl2an |  | 
						
							| 63 | 62 48 50 | divcld |  | 
						
							| 64 | 60 63 | eqeltrd |  | 
						
							| 65 | 2 3 64 | serf |  | 
						
							| 66 | 65 | ffvelcdmda |  | 
						
							| 67 |  | simpr |  | 
						
							| 68 | 67 2 | eleqtrdi |  | 
						
							| 69 |  | simpl |  | 
						
							| 70 |  | elfznn |  | 
						
							| 71 | 69 70 52 | syl2an |  | 
						
							| 72 | 69 70 64 | syl2an |  | 
						
							| 73 | 39 56 | oveq12d |  | 
						
							| 74 |  | eqid |  | 
						
							| 75 |  | ovex |  | 
						
							| 76 | 73 74 75 | fvmpt |  | 
						
							| 77 | 76 | adantl |  | 
						
							| 78 | 43 60 | oveq12d |  | 
						
							| 79 | 77 78 | eqtr4d |  | 
						
							| 80 | 69 70 79 | syl2an |  | 
						
							| 81 | 68 71 72 80 | sersub |  | 
						
							| 82 | 2 3 31 33 36 54 66 81 | climsub |  | 
						
							| 83 |  | addcl |  | 
						
							| 84 | 26 9 83 | sylancr |  | 
						
							| 85 |  | bndatandm |  | 
						
							| 86 |  | atandm2 |  | 
						
							| 87 | 85 86 | sylib |  | 
						
							| 88 | 87 | simp3d |  | 
						
							| 89 | 84 88 | logcld |  | 
						
							| 90 |  | subcl |  | 
						
							| 91 | 26 9 90 | sylancr |  | 
						
							| 92 | 87 | simp2d |  | 
						
							| 93 | 91 92 | logcld |  | 
						
							| 94 | 89 93 | neg2subd |  | 
						
							| 95 | 82 94 | breqtrd |  | 
						
							| 96 | 51 63 | subcld |  | 
						
							| 97 | 77 96 | eqeltrd |  | 
						
							| 98 | 4 | a1i |  | 
						
							| 99 |  | negicn |  | 
						
							| 100 | 44 | adantl |  | 
						
							| 101 |  | expcl |  | 
						
							| 102 | 99 100 101 | sylancr |  | 
						
							| 103 |  | expcl |  | 
						
							| 104 | 4 100 103 | sylancr |  | 
						
							| 105 | 102 104 | subcld |  | 
						
							| 106 |  | 2cnd |  | 
						
							| 107 |  | 2ne0 |  | 
						
							| 108 | 107 | a1i |  | 
						
							| 109 | 98 105 106 108 | div23d |  | 
						
							| 110 | 109 | oveq1d |  | 
						
							| 111 | 6 | adantr |  | 
						
							| 112 |  | expcl |  | 
						
							| 113 | 7 44 112 | syl2an |  | 
						
							| 114 | 113 48 50 | divcld |  | 
						
							| 115 | 111 105 114 | mulassd |  | 
						
							| 116 | 102 104 113 | subdird |  | 
						
							| 117 | 7 | adantr |  | 
						
							| 118 |  | mulneg1 |  | 
						
							| 119 | 4 117 118 | sylancr |  | 
						
							| 120 | 119 | oveq1d |  | 
						
							| 121 | 99 | a1i |  | 
						
							| 122 | 121 117 100 | mulexpd |  | 
						
							| 123 | 120 122 | eqtr3d |  | 
						
							| 124 | 98 117 100 | mulexpd |  | 
						
							| 125 | 123 124 | oveq12d |  | 
						
							| 126 | 116 125 | eqtr4d |  | 
						
							| 127 | 126 | oveq1d |  | 
						
							| 128 | 105 113 48 50 | divassd |  | 
						
							| 129 | 46 62 48 50 | divsubdird |  | 
						
							| 130 | 127 128 129 | 3eqtr3d |  | 
						
							| 131 | 130 | oveq2d |  | 
						
							| 132 | 110 115 131 | 3eqtrd |  | 
						
							| 133 |  | oveq2 |  | 
						
							| 134 |  | oveq2 |  | 
						
							| 135 | 133 134 | oveq12d |  | 
						
							| 136 | 135 | oveq2d |  | 
						
							| 137 | 136 | oveq1d |  | 
						
							| 138 |  | oveq2 |  | 
						
							| 139 | 138 38 | oveq12d |  | 
						
							| 140 | 137 139 | oveq12d |  | 
						
							| 141 |  | ovex |  | 
						
							| 142 | 140 1 141 | fvmpt |  | 
						
							| 143 | 142 | adantl |  | 
						
							| 144 | 77 | oveq2d |  | 
						
							| 145 | 132 143 144 | 3eqtr4d |  | 
						
							| 146 | 2 3 6 95 97 145 | isermulc2 |  | 
						
							| 147 |  | atanval |  | 
						
							| 148 | 85 147 | syl |  | 
						
							| 149 | 146 148 | breqtrrd |  |