Metamath Proof Explorer


Theorem axdc4uzlem

Description: Lemma for axdc4uz . (Contributed by Mario Carneiro, 8-Jan-2014) (Revised by Mario Carneiro, 26-Dec-2014)

Ref Expression
Hypotheses axdc4uz.1 M
axdc4uz.2 Z=M
axdc4uz.3 AV
axdc4uz.4 G=recyVy+1Mω
axdc4uz.5 H=nω,xAGnFx
Assertion axdc4uzlem CAF:Z×A𝒫Agg:ZAgM=CkZgk+1kFgk

Proof

Step Hyp Ref Expression
1 axdc4uz.1 M
2 axdc4uz.2 Z=M
3 axdc4uz.3 AV
4 axdc4uz.4 G=recyVy+1Mω
5 axdc4uz.5 H=nω,xAGnFx
6 1 4 om2uzf1oi G:ω1-1 ontoM
7 f1oeq3 Z=MG:ω1-1 ontoZG:ω1-1 ontoM
8 2 7 ax-mp G:ω1-1 ontoZG:ω1-1 ontoM
9 6 8 mpbir G:ω1-1 ontoZ
10 f1of G:ω1-1 ontoZG:ωZ
11 9 10 ax-mp G:ωZ
12 11 ffvelcdmi nωGnZ
13 fovcdm F:Z×A𝒫AGnZxAGnFx𝒫A
14 12 13 syl3an2 F:Z×A𝒫AnωxAGnFx𝒫A
15 14 3expb F:Z×A𝒫AnωxAGnFx𝒫A
16 15 ralrimivva F:Z×A𝒫AnωxAGnFx𝒫A
17 5 fmpo nωxAGnFx𝒫AH:ω×A𝒫A
18 16 17 sylib F:Z×A𝒫AH:ω×A𝒫A
19 3 axdc4 CAH:ω×A𝒫Aff:ωAf=CmωfsucmmHfm
20 18 19 sylan2 CAF:Z×A𝒫Aff:ωAf=CmωfsucmmHfm
21 f1ocnv G:ω1-1 ontoZG-1:Z1-1 ontoω
22 f1of G-1:Z1-1 ontoωG-1:Zω
23 9 21 22 mp2b G-1:Zω
24 fco f:ωAG-1:ZωfG-1:ZA
25 23 24 mpan2 f:ωAfG-1:ZA
26 25 3ad2ant1 f:ωAf=CmωfsucmmHfmfG-1:ZA
27 uzid MMM
28 1 27 ax-mp MM
29 28 2 eleqtrri MZ
30 fvco3 G-1:ZωMZfG-1M=fG-1M
31 23 29 30 mp2an fG-1M=fG-1M
32 1 4 om2uz0i G=M
33 peano1 ω
34 f1ocnvfv G:ω1-1 ontoZωG=MG-1M=
35 9 33 34 mp2an G=MG-1M=
36 32 35 ax-mp G-1M=
37 36 fveq2i fG-1M=f
38 31 37 eqtri fG-1M=f
39 simp2 f:ωAf=CmωfsucmmHfmf=C
40 38 39 eqtrid f:ωAf=CmωfsucmmHfmfG-1M=C
41 23 ffvelcdmi kZG-1kω
42 41 adantl f:ωAkZG-1kω
43 suceq m=G-1ksucm=sucG-1k
44 43 fveq2d m=G-1kfsucm=fsucG-1k
45 id m=G-1km=G-1k
46 fveq2 m=G-1kfm=fG-1k
47 45 46 oveq12d m=G-1kmHfm=G-1kHfG-1k
48 44 47 eleq12d m=G-1kfsucmmHfmfsucG-1kG-1kHfG-1k
49 48 rspcv G-1kωmωfsucmmHfmfsucG-1kG-1kHfG-1k
50 42 49 syl f:ωAkZmωfsucmmHfmfsucG-1kG-1kHfG-1k
51 2 peano2uzs kZk+1Z
52 fvco3 G-1:Zωk+1ZfG-1k+1=fG-1k+1
53 23 51 52 sylancr kZfG-1k+1=fG-1k+1
54 1 4 om2uzsuci G-1kωGsucG-1k=GG-1k+1
55 41 54 syl kZGsucG-1k=GG-1k+1
56 f1ocnvfv2 G:ω1-1 ontoZkZGG-1k=k
57 9 56 mpan kZGG-1k=k
58 57 oveq1d kZGG-1k+1=k+1
59 55 58 eqtrd kZGsucG-1k=k+1
60 peano2 G-1kωsucG-1kω
61 41 60 syl kZsucG-1kω
62 f1ocnvfv G:ω1-1 ontoZsucG-1kωGsucG-1k=k+1G-1k+1=sucG-1k
63 9 61 62 sylancr kZGsucG-1k=k+1G-1k+1=sucG-1k
64 59 63 mpd kZG-1k+1=sucG-1k
65 64 fveq2d kZfG-1k+1=fsucG-1k
66 53 65 eqtr2d kZfsucG-1k=fG-1k+1
67 66 adantl f:ωAkZfsucG-1k=fG-1k+1
68 ffvelcdm f:ωAG-1kωfG-1kA
69 41 68 sylan2 f:ωAkZfG-1kA
70 fveq2 n=G-1kGn=GG-1k
71 70 oveq1d n=G-1kGnFx=GG-1kFx
72 oveq2 x=fG-1kGG-1kFx=GG-1kFfG-1k
73 ovex GG-1kFfG-1kV
74 71 72 5 73 ovmpo G-1kωfG-1kAG-1kHfG-1k=GG-1kFfG-1k
75 42 69 74 syl2anc f:ωAkZG-1kHfG-1k=GG-1kFfG-1k
76 fvco3 G-1:ZωkZfG-1k=fG-1k
77 23 76 mpan kZfG-1k=fG-1k
78 77 eqcomd kZfG-1k=fG-1k
79 57 78 oveq12d kZGG-1kFfG-1k=kFfG-1k
80 79 adantl f:ωAkZGG-1kFfG-1k=kFfG-1k
81 75 80 eqtrd f:ωAkZG-1kHfG-1k=kFfG-1k
82 67 81 eleq12d f:ωAkZfsucG-1kG-1kHfG-1kfG-1k+1kFfG-1k
83 50 82 sylibd f:ωAkZmωfsucmmHfmfG-1k+1kFfG-1k
84 83 impancom f:ωAmωfsucmmHfmkZfG-1k+1kFfG-1k
85 84 ralrimiv f:ωAmωfsucmmHfmkZfG-1k+1kFfG-1k
86 85 3adant2 f:ωAf=CmωfsucmmHfmkZfG-1k+1kFfG-1k
87 vex fV
88 rdgfun FunrecyVy+1M
89 omex ωV
90 resfunexg FunrecyVy+1MωVrecyVy+1MωV
91 88 89 90 mp2an recyVy+1MωV
92 4 91 eqeltri GV
93 92 cnvex G-1V
94 87 93 coex fG-1V
95 feq1 g=fG-1g:ZAfG-1:ZA
96 fveq1 g=fG-1gM=fG-1M
97 96 eqeq1d g=fG-1gM=CfG-1M=C
98 fveq1 g=fG-1gk+1=fG-1k+1
99 fveq1 g=fG-1gk=fG-1k
100 99 oveq2d g=fG-1kFgk=kFfG-1k
101 98 100 eleq12d g=fG-1gk+1kFgkfG-1k+1kFfG-1k
102 101 ralbidv g=fG-1kZgk+1kFgkkZfG-1k+1kFfG-1k
103 95 97 102 3anbi123d g=fG-1g:ZAgM=CkZgk+1kFgkfG-1:ZAfG-1M=CkZfG-1k+1kFfG-1k
104 94 103 spcev fG-1:ZAfG-1M=CkZfG-1k+1kFfG-1kgg:ZAgM=CkZgk+1kFgk
105 26 40 86 104 syl3anc f:ωAf=CmωfsucmmHfmgg:ZAgM=CkZgk+1kFgk
106 105 exlimiv ff:ωAf=CmωfsucmmHfmgg:ZAgM=CkZgk+1kFgk
107 20 106 syl CAF:Z×A𝒫Agg:ZAgM=CkZgk+1kFgk