Metamath Proof Explorer


Theorem ballotlemfrcn0

Description: Value of F for a reversed counting ( RC ) , before the first tie, cannot be zero. (Contributed by Thierry Arnoux, 25-Apr-2017) (Revised by AV, 6-Oct-2020)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
ballotth.i I=cOEsupk1M+N|Fck=0<
ballotth.s S=cOEi1M+NifiIcIc+1-ii
ballotth.r R=cOEScc
Assertion ballotlemfrcn0 COEJ1M+NJ<ICFRCJ0

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 ballotth.i I=cOEsupk1M+N|Fck=0<
9 ballotth.s S=cOEi1M+NifiIcIc+1-ii
10 ballotth.r R=cOEScc
11 1zzd COEJ1M+NJ<IC1
12 nnaddcl MNM+N
13 1 2 12 mp2an M+N
14 13 nnzi M+N
15 14 a1i COEJ1M+NJ<ICM+N
16 1 2 3 4 5 6 7 8 9 ballotlemsdom COEJ1M+NSCJ1M+N
17 16 elfzelzd COEJ1M+NSCJ
18 17 3adant3 COEJ1M+NJ<ICSCJ
19 18 11 zsubcld COEJ1M+NJ<ICSCJ1
20 1 2 3 4 5 6 7 8 9 ballotlemsgt1 COEJ1M+NJ<IC1<SCJ
21 zltlem1 1SCJ1<SCJ1SCJ1
22 21 biimpa 1SCJ1<SCJ1SCJ1
23 11 18 20 22 syl21anc COEJ1M+NJ<IC1SCJ1
24 18 zred COEJ1M+NJ<ICSCJ
25 1red COEJ1M+NJ<IC1
26 24 25 resubcld COEJ1M+NJ<ICSCJ1
27 simp1 COEJ1M+NJ<ICCOE
28 1 2 3 4 5 6 7 8 ballotlemiex COEIC1M+NFCIC=0
29 28 simpld COEIC1M+N
30 elfzelz IC1M+NIC
31 27 29 30 3syl COEJ1M+NJ<ICIC
32 31 zred COEJ1M+NJ<ICIC
33 15 zred COEJ1M+NJ<ICM+N
34 elfzelz J1M+NJ
35 34 3ad2ant2 COEJ1M+NJ<ICJ
36 elfzle1 J1M+N1J
37 36 3ad2ant2 COEJ1M+NJ<IC1J
38 35 zred COEJ1M+NJ<ICJ
39 simp3 COEJ1M+NJ<ICJ<IC
40 38 32 39 ltled COEJ1M+NJ<ICJIC
41 11 31 35 37 40 elfzd COEJ1M+NJ<ICJ1IC
42 1 2 3 4 5 6 7 8 9 ballotlemsel1i COEJ1ICSCJ1IC
43 27 41 42 syl2anc COEJ1M+NJ<ICSCJ1IC
44 elfzle2 SCJ1ICSCJIC
45 43 44 syl COEJ1M+NJ<ICSCJIC
46 zlem1lt SCJICSCJICSCJ1<IC
47 18 31 46 syl2anc COEJ1M+NJ<ICSCJICSCJ1<IC
48 45 47 mpbid COEJ1M+NJ<ICSCJ1<IC
49 26 32 48 ltled COEJ1M+NJ<ICSCJ1IC
50 elfzle2 IC1M+NICM+N
51 27 29 50 3syl COEJ1M+NJ<ICICM+N
52 26 32 33 49 51 letrd COEJ1M+NJ<ICSCJ1M+N
53 11 15 19 23 52 elfzd COEJ1M+NJ<ICSCJ11M+N
54 biid SCJ1<ICSCJ1<IC
55 48 54 sylibr COEJ1M+NJ<ICSCJ1<IC
56 1 2 3 4 5 6 7 8 ballotlemi COEIC=supk1M+N|FCk=0<
57 56 breq2d COESCJ1<ICSCJ1<supk1M+N|FCk=0<
58 57 3ad2ant1 COEJ1M+NJ<ICSCJ1<ICSCJ1<supk1M+N|FCk=0<
59 55 58 mpbid COEJ1M+NJ<ICSCJ1<supk1M+N|FCk=0<
60 ltso <Or
61 60 a1i COE<Or
62 1 2 3 4 5 6 7 8 ballotlemsup COEzwk1M+N|FCk=0¬w<zwz<wyk1M+N|FCk=0y<w
63 61 62 inflb COESCJ1k1M+N|FCk=0¬SCJ1<supk1M+N|FCk=0<
64 63 con2d COESCJ1<supk1M+N|FCk=0<¬SCJ1k1M+N|FCk=0
65 27 59 64 sylc COEJ1M+NJ<IC¬SCJ1k1M+N|FCk=0
66 fveqeq2 k=SCJ1FCk=0FCSCJ1=0
67 66 elrab SCJ1k1M+N|FCk=0SCJ11M+NFCSCJ1=0
68 65 67 sylnib COEJ1M+NJ<IC¬SCJ11M+NFCSCJ1=0
69 imnan SCJ11M+N¬FCSCJ1=0¬SCJ11M+NFCSCJ1=0
70 68 69 sylibr COEJ1M+NJ<ICSCJ11M+N¬FCSCJ1=0
71 53 70 mpd COEJ1M+NJ<IC¬FCSCJ1=0
72 71 neqned COEJ1M+NJ<ICFCSCJ10
73 1 2 3 4 5 6 7 8 9 10 ballotlemro COERCO
74 73 adantr COEJ1ICRCO
75 elfzelz J1ICJ
76 75 adantl COEJ1ICJ
77 1 2 3 4 5 74 76 ballotlemfelz COEJ1ICFRCJ
78 77 zcnd COEJ1ICFRCJ
79 78 negeq0d COEJ1ICFRCJ=0FRCJ=0
80 eqid uFin,vFinvuvu=uFin,vFinvuvu
81 1 2 3 4 5 6 7 8 9 10 80 ballotlemfrceq COEJ1ICFCSCJ1=FRCJ
82 81 eqeq1d COEJ1ICFCSCJ1=0FRCJ=0
83 79 82 bitr4d COEJ1ICFRCJ=0FCSCJ1=0
84 83 necon3bid COEJ1ICFRCJ0FCSCJ10
85 27 41 84 syl2anc COEJ1M+NJ<ICFRCJ0FCSCJ10
86 72 85 mpbird COEJ1M+NJ<ICFRCJ0