| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
sumeq1d |
|
| 3 |
|
oveq1 |
|
| 4 |
|
0p1e1 |
|
| 5 |
3 4
|
eqtrdi |
|
| 6 |
5
|
oveq1d |
|
| 7 |
2 6
|
eqeq12d |
|
| 8 |
7
|
imbi2d |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
sumeq1d |
|
| 11 |
|
oveq1 |
|
| 12 |
11
|
oveq1d |
|
| 13 |
10 12
|
eqeq12d |
|
| 14 |
13
|
imbi2d |
|
| 15 |
|
oveq2 |
|
| 16 |
15
|
sumeq1d |
|
| 17 |
|
oveq1 |
|
| 18 |
17
|
oveq1d |
|
| 19 |
16 18
|
eqeq12d |
|
| 20 |
19
|
imbi2d |
|
| 21 |
|
oveq2 |
|
| 22 |
21
|
sumeq1d |
|
| 23 |
|
oveq1 |
|
| 24 |
23
|
oveq1d |
|
| 25 |
22 24
|
eqeq12d |
|
| 26 |
25
|
imbi2d |
|
| 27 |
|
0z |
|
| 28 |
|
0nn0 |
|
| 29 |
|
nn0z |
|
| 30 |
|
bccl |
|
| 31 |
28 29 30
|
sylancr |
|
| 32 |
31
|
nn0cnd |
|
| 33 |
|
oveq1 |
|
| 34 |
33
|
fsum1 |
|
| 35 |
27 32 34
|
sylancr |
|
| 36 |
|
elnn0 |
|
| 37 |
|
1red |
|
| 38 |
|
nnrp |
|
| 39 |
37 38
|
ltaddrp2d |
|
| 40 |
|
peano2nn |
|
| 41 |
40
|
nnred |
|
| 42 |
37 41
|
ltnled |
|
| 43 |
39 42
|
mpbid |
|
| 44 |
|
elfzle2 |
|
| 45 |
43 44
|
nsyl |
|
| 46 |
45
|
iffalsed |
|
| 47 |
|
1nn0 |
|
| 48 |
40
|
nnzd |
|
| 49 |
|
bcval |
|
| 50 |
47 48 49
|
sylancr |
|
| 51 |
|
bc0k |
|
| 52 |
46 50 51
|
3eqtr4rd |
|
| 53 |
|
bcnn |
|
| 54 |
28 53
|
ax-mp |
|
| 55 |
|
bcnn |
|
| 56 |
47 55
|
ax-mp |
|
| 57 |
54 56
|
eqtr4i |
|
| 58 |
|
oveq2 |
|
| 59 |
|
oveq1 |
|
| 60 |
59 4
|
eqtrdi |
|
| 61 |
60
|
oveq2d |
|
| 62 |
57 58 61
|
3eqtr4a |
|
| 63 |
52 62
|
jaoi |
|
| 64 |
36 63
|
sylbi |
|
| 65 |
35 64
|
eqtrd |
|
| 66 |
|
elnn0uz |
|
| 67 |
66
|
biimpi |
|
| 68 |
67
|
adantr |
|
| 69 |
|
elfznn0 |
|
| 70 |
69
|
adantl |
|
| 71 |
|
simplr |
|
| 72 |
71
|
nn0zd |
|
| 73 |
|
bccl |
|
| 74 |
70 72 73
|
syl2anc |
|
| 75 |
74
|
nn0cnd |
|
| 76 |
|
oveq1 |
|
| 77 |
68 75 76
|
fsump1 |
|
| 78 |
77
|
adantr |
|
| 79 |
|
id |
|
| 80 |
|
nn0cn |
|
| 81 |
80
|
adantl |
|
| 82 |
|
1cnd |
|
| 83 |
81 82
|
pncand |
|
| 84 |
83
|
oveq2d |
|
| 85 |
84
|
eqcomd |
|
| 86 |
79 85
|
oveqan12rd |
|
| 87 |
|
peano2nn0 |
|
| 88 |
|
peano2nn0 |
|
| 89 |
88
|
nn0zd |
|
| 90 |
|
bcpasc |
|
| 91 |
87 89 90
|
syl2an |
|
| 92 |
91
|
adantr |
|
| 93 |
78 86 92
|
3eqtrd |
|
| 94 |
93
|
exp31 |
|
| 95 |
94
|
a2d |
|
| 96 |
8 14 20 26 65 95
|
nn0ind |
|
| 97 |
96
|
imp |
|