Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
sumeq1d |
|
3 |
|
oveq1 |
|
4 |
|
0p1e1 |
|
5 |
3 4
|
eqtrdi |
|
6 |
5
|
oveq1d |
|
7 |
2 6
|
eqeq12d |
|
8 |
7
|
imbi2d |
|
9 |
|
oveq2 |
|
10 |
9
|
sumeq1d |
|
11 |
|
oveq1 |
|
12 |
11
|
oveq1d |
|
13 |
10 12
|
eqeq12d |
|
14 |
13
|
imbi2d |
|
15 |
|
oveq2 |
|
16 |
15
|
sumeq1d |
|
17 |
|
oveq1 |
|
18 |
17
|
oveq1d |
|
19 |
16 18
|
eqeq12d |
|
20 |
19
|
imbi2d |
|
21 |
|
oveq2 |
|
22 |
21
|
sumeq1d |
|
23 |
|
oveq1 |
|
24 |
23
|
oveq1d |
|
25 |
22 24
|
eqeq12d |
|
26 |
25
|
imbi2d |
|
27 |
|
0z |
|
28 |
|
0nn0 |
|
29 |
|
nn0z |
|
30 |
|
bccl |
|
31 |
28 29 30
|
sylancr |
|
32 |
31
|
nn0cnd |
|
33 |
|
oveq1 |
|
34 |
33
|
fsum1 |
|
35 |
27 32 34
|
sylancr |
|
36 |
|
elnn0 |
|
37 |
|
1red |
|
38 |
|
nnrp |
|
39 |
37 38
|
ltaddrp2d |
|
40 |
|
peano2nn |
|
41 |
40
|
nnred |
|
42 |
37 41
|
ltnled |
|
43 |
39 42
|
mpbid |
|
44 |
|
elfzle2 |
|
45 |
43 44
|
nsyl |
|
46 |
45
|
iffalsed |
|
47 |
|
1nn0 |
|
48 |
40
|
nnzd |
|
49 |
|
bcval |
|
50 |
47 48 49
|
sylancr |
|
51 |
|
bc0k |
|
52 |
46 50 51
|
3eqtr4rd |
|
53 |
|
bcnn |
|
54 |
28 53
|
ax-mp |
|
55 |
|
bcnn |
|
56 |
47 55
|
ax-mp |
|
57 |
54 56
|
eqtr4i |
|
58 |
|
oveq2 |
|
59 |
|
oveq1 |
|
60 |
59 4
|
eqtrdi |
|
61 |
60
|
oveq2d |
|
62 |
57 58 61
|
3eqtr4a |
|
63 |
52 62
|
jaoi |
|
64 |
36 63
|
sylbi |
|
65 |
35 64
|
eqtrd |
|
66 |
|
elnn0uz |
|
67 |
66
|
biimpi |
|
68 |
67
|
adantr |
|
69 |
|
elfznn0 |
|
70 |
69
|
adantl |
|
71 |
|
simplr |
|
72 |
71
|
nn0zd |
|
73 |
|
bccl |
|
74 |
70 72 73
|
syl2anc |
|
75 |
74
|
nn0cnd |
|
76 |
|
oveq1 |
|
77 |
68 75 76
|
fsump1 |
|
78 |
77
|
adantr |
|
79 |
|
id |
|
80 |
|
nn0cn |
|
81 |
80
|
adantl |
|
82 |
|
1cnd |
|
83 |
81 82
|
pncand |
|
84 |
83
|
oveq2d |
|
85 |
84
|
eqcomd |
|
86 |
79 85
|
oveqan12rd |
|
87 |
|
peano2nn0 |
|
88 |
|
peano2nn0 |
|
89 |
88
|
nn0zd |
|
90 |
|
bcpasc |
|
91 |
87 89 90
|
syl2an |
|
92 |
91
|
adantr |
|
93 |
78 86 92
|
3eqtrd |
|
94 |
93
|
exp31 |
|
95 |
94
|
a2d |
|
96 |
8 14 20 26 65 95
|
nn0ind |
|
97 |
96
|
imp |
|