Metamath Proof Explorer


Theorem bclbnd

Description: A bound on the binomial coefficient. (Contributed by Mario Carneiro, 11-Mar-2014)

Ref Expression
Assertion bclbnd N44NN<(2 NN)

Proof

Step Hyp Ref Expression
1 oveq2 x=44x=44
2 id x=4x=4
3 1 2 oveq12d x=44xx=444
4 oveq2 x=42x=24
5 4 2 oveq12d x=4(2xx)=(244)
6 3 5 breq12d x=44xx<(2xx)444<(244)
7 oveq2 x=n4x=4n
8 id x=nx=n
9 7 8 oveq12d x=n4xx=4nn
10 oveq2 x=n2x=2n
11 10 8 oveq12d x=n(2xx)=(2nn)
12 9 11 breq12d x=n4xx<(2xx)4nn<(2nn)
13 oveq2 x=n+14x=4n+1
14 id x=n+1x=n+1
15 13 14 oveq12d x=n+14xx=4n+1n+1
16 oveq2 x=n+12x=2n+1
17 16 14 oveq12d x=n+1(2xx)=(2n+1n+1)
18 15 17 breq12d x=n+14xx<(2xx)4n+1n+1<(2n+1n+1)
19 oveq2 x=N4x=4N
20 id x=Nx=N
21 19 20 oveq12d x=N4xx=4NN
22 oveq2 x=N2x=2 N
23 22 20 oveq12d x=N(2xx)=(2 NN)
24 21 23 breq12d x=N4xx<(2xx)4NN<(2 NN)
25 6nn0 60
26 7nn0 70
27 4nn0 40
28 0nn0 00
29 4lt10 4<10
30 6lt7 6<7
31 25 26 27 28 29 30 decltc 64<70
32 2cn 2
33 2nn0 20
34 3nn0 30
35 expmul 22030223=223
36 32 33 34 35 mp3an 223=223
37 sq2 22=4
38 37 eqcomi 4=22
39 4m1e3 41=3
40 38 39 oveq12i 441=223
41 36 40 eqtr4i 223=441
42 3cn 3
43 3t2e6 32=6
44 42 32 43 mulcomli 23=6
45 44 oveq2i 223=26
46 2exp6 26=64
47 45 46 eqtri 223=64
48 4cn 4
49 4ne0 40
50 4z 4
51 expm1 4404441=444
52 48 49 50 51 mp3an 441=444
53 41 47 52 3eqtr3ri 444=64
54 df-4 4=3+1
55 54 oveq2i 24=23+1
56 55 54 oveq12i (244)=(23+13+1)
57 bcp1ctr 30(23+13+1)=(233)223+13+1
58 34 57 ax-mp (23+13+1)=(233)223+13+1
59 df-3 3=2+1
60 59 oveq2i 23=22+1
61 60 59 oveq12i (233)=(22+12+1)
62 bcp1ctr 20(22+12+1)=(222)222+12+1
63 33 62 ax-mp (22+12+1)=(222)222+12+1
64 df-2 2=1+1
65 64 oveq2i 22=21+1
66 65 64 oveq12i (222)=(21+11+1)
67 1nn0 10
68 bcp1ctr 10(21+11+1)=(211)221+11+1
69 67 68 ax-mp (21+11+1)=(211)221+11+1
70 1e0p1 1=0+1
71 70 oveq2i 21=20+1
72 71 70 oveq12i (211)=(20+10+1)
73 bcp1ctr 00(20+10+1)=(200)220+10+1
74 28 73 ax-mp (20+10+1)=(200)220+10+1
75 33 28 nn0mulcli 200
76 bcn0 200(200)=1
77 75 76 ax-mp (200)=1
78 2t0e0 20=0
79 78 oveq1i 20+1=0+1
80 79 70 eqtr4i 20+1=1
81 70 eqcomi 0+1=1
82 80 81 oveq12i 20+10+1=11
83 1div1e1 11=1
84 82 83 eqtri 20+10+1=1
85 84 oveq2i 220+10+1=21
86 2t1e2 21=2
87 85 86 eqtri 220+10+1=2
88 77 87 oveq12i (200)220+10+1=12
89 32 mullidi 12=2
90 88 89 eqtri (200)220+10+1=2
91 72 74 90 3eqtri (211)=2
92 86 oveq1i 21+1=2+1
93 92 59 eqtr4i 21+1=3
94 64 eqcomi 1+1=2
95 93 94 oveq12i 21+11+1=32
96 95 oveq2i 221+11+1=232
97 2ne0 20
98 42 32 97 divcan2i 232=3
99 96 98 eqtri 221+11+1=3
100 91 99 oveq12i (211)221+11+1=23
101 100 44 eqtri (211)221+11+1=6
102 66 69 101 3eqtri (222)=6
103 2t2e4 22=4
104 103 oveq1i 22+1=4+1
105 df-5 5=4+1
106 104 105 eqtr4i 22+1=5
107 59 eqcomi 2+1=3
108 106 107 oveq12i 22+12+1=53
109 108 oveq2i 222+12+1=253
110 5cn 5
111 3ne0 30
112 32 110 42 111 divassi 253=253
113 109 112 eqtr4i 222+12+1=253
114 102 113 oveq12i (222)222+12+1=6253
115 63 114 eqtri (22+12+1)=6253
116 6cn 6
117 2nn 2
118 5nn 5
119 117 118 nnmulcli 25
120 119 nncni 25
121 42 111 pm3.2i 330
122 div12 6253306253=2563
123 116 120 121 122 mp3an 6253=2563
124 5t2e10 52=10
125 110 32 124 mulcomli 25=10
126 116 42 32 111 divmuli 63=232=6
127 43 126 mpbir 63=2
128 125 127 oveq12i 2563=102
129 123 128 eqtri 6253=102
130 61 115 129 3eqtri (233)=102
131 44 oveq1i 23+1=6+1
132 df-7 7=6+1
133 131 132 eqtr4i 23+1=7
134 3p1e4 3+1=4
135 133 134 oveq12i 23+13+1=74
136 135 oveq2i 223+13+1=274
137 130 136 oveq12i (233)223+13+1=102274
138 56 58 137 3eqtri (244)=102274
139 10nn 10
140 139 nncni 10
141 7cn 7
142 141 48 49 divcli 74
143 32 142 mulcli 274
144 140 32 143 mulassi 102274=102274
145 103 oveq1i 2274=474
146 32 32 142 mulassi 2274=2274
147 141 48 49 divcan2i 474=7
148 145 146 147 3eqtr3i 2274=7
149 148 oveq2i 102274=107
150 144 149 eqtri 102274=107
151 26 dec0u 107=70
152 138 150 151 3eqtri (244)=70
153 31 53 152 3brtr4i 444<(244)
154 4nn 4
155 eluznn 4n4n
156 154 155 mpan n4n
157 nnnn0 nn0
158 nnexpcl 4n04n
159 154 157 158 sylancr n4n
160 159 nnrpd n4n+
161 nnrp nn+
162 160 161 rpdivcld n4nn+
163 162 rpred n4nn
164 nnmulcl 2n2n
165 117 164 mpan n2n
166 165 nnnn0d n2n0
167 nnz nn
168 bccl 2n0n(2nn)0
169 166 167 168 syl2anc n(2nn)0
170 169 nn0red n(2nn)
171 2rp 2+
172 165 peano2nnd n2n+1
173 172 nnrpd n2n+1+
174 peano2nn nn+1
175 174 nnrpd nn+1+
176 173 175 rpdivcld n2n+1n+1+
177 rpmulcl 2+2n+1n+1+22n+1n+1+
178 171 176 177 sylancr n22n+1n+1+
179 163 170 178 ltmul1d n4nn<(2nn)4nn22n+1n+1<(2nn)22n+1n+1
180 bcp1ctr n0(2n+1n+1)=(2nn)22n+1n+1
181 157 180 syl n(2n+1n+1)=(2nn)22n+1n+1
182 181 breq2d n4nn22n+1n+1<(2n+1n+1)4nn22n+1n+1<(2nn)22n+1n+1
183 179 182 bitr4d n4nn<(2nn)4nn22n+1n+1<(2n+1n+1)
184 2re 2
185 184 a1i n2
186 173 161 rpdivcld n2n+1n+
187 186 rpred n2n+1n
188 nnmulcl 4n24n2
189 159 117 188 sylancl n4n2
190 189 nnrpd n4n2+
191 190 175 rpdivcld n4n2n+1+
192 161 rpreccld n1n+
193 ltaddrp 21n+2<2+1n
194 184 192 193 sylancr n2<2+1n
195 165 nncnd n2n
196 1cnd n1
197 nncn nn
198 nnne0 nn0
199 195 196 197 198 divdird n2n+1n=2nn+1n
200 32 a1i n2
201 200 197 198 divcan4d n2nn=2
202 201 oveq1d n2nn+1n=2+1n
203 199 202 eqtr2d n2+1n=2n+1n
204 194 203 breqtrd n2<2n+1n
205 185 187 191 204 ltmul2dd n4n2n+12<4n2n+12n+1n
206 expp1 4n04n+1=4n4
207 48 157 206 sylancr n4n+1=4n4
208 159 nncnd n4n
209 208 200 200 mulassd n4n22=4n22
210 103 oveq2i 4n22=4n4
211 209 210 eqtrdi n4n22=4n4
212 207 211 eqtr4d n4n+1=4n22
213 212 oveq1d n4n+1n+1=4n22n+1
214 189 nncnd n4n2
215 174 nncnd nn+1
216 174 nnne0d nn+10
217 214 200 215 216 div23d n4n22n+1=4n2n+12
218 213 217 eqtrd n4n+1n+1=4n2n+12
219 208 200 197 198 div23d n4n2n=4nn2
220 219 oveq1d n4n2n2n+1n+1=4nn22n+1n+1
221 172 nncnd n2n+1
222 214 197 221 215 198 216 divmul24d n4n2n2n+1n+1=4n2n+12n+1n
223 162 rpcnd n4nn
224 176 rpcnd n2n+1n+1
225 223 200 224 mulassd n4nn22n+1n+1=4nn22n+1n+1
226 220 222 225 3eqtr3rd n4nn22n+1n+1=4n2n+12n+1n
227 205 218 226 3brtr4d n4n+1n+1<4nn22n+1n+1
228 174 nnnn0d nn+10
229 nnexpcl 4n+104n+1
230 154 228 229 sylancr n4n+1
231 230 nnrpd n4n+1+
232 231 175 rpdivcld n4n+1n+1+
233 232 rpred n4n+1n+1
234 178 rpred n22n+1n+1
235 163 234 remulcld n4nn22n+1n+1
236 nn0mulcl 20n+102n+10
237 33 228 236 sylancr n2n+10
238 174 nnzd nn+1
239 bccl 2n+10n+1(2n+1n+1)0
240 237 238 239 syl2anc n(2n+1n+1)0
241 240 nn0red n(2n+1n+1)
242 lttr 4n+1n+14nn22n+1n+1(2n+1n+1)4n+1n+1<4nn22n+1n+14nn22n+1n+1<(2n+1n+1)4n+1n+1<(2n+1n+1)
243 233 235 241 242 syl3anc n4n+1n+1<4nn22n+1n+14nn22n+1n+1<(2n+1n+1)4n+1n+1<(2n+1n+1)
244 227 243 mpand n4nn22n+1n+1<(2n+1n+1)4n+1n+1<(2n+1n+1)
245 183 244 sylbid n4nn<(2nn)4n+1n+1<(2n+1n+1)
246 156 245 syl n44nn<(2nn)4n+1n+1<(2n+1n+1)
247 6 12 18 24 153 246 uzind4i N44NN<(2 NN)