Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Bertrand's postulate
bclbnd
Next ⟩
efexple
Metamath Proof Explorer
Ascii
Unicode
Theorem
bclbnd
Description:
A bound on the binomial coefficient.
(Contributed by
Mario Carneiro
, 11-Mar-2014)
Ref
Expression
Assertion
bclbnd
⊢
N
∈
ℤ
≥
4
→
4
N
N
<
(
2
⋅
N
N
)
Proof
Step
Hyp
Ref
Expression
1
oveq2
⊢
x
=
4
→
4
x
=
4
4
2
id
⊢
x
=
4
→
x
=
4
3
1
2
oveq12d
⊢
x
=
4
→
4
x
x
=
4
4
4
4
oveq2
⊢
x
=
4
→
2
x
=
2
⋅
4
5
4
2
oveq12d
⊢
x
=
4
→
(
2
x
x
)
=
(
2
⋅
4
4
)
6
3
5
breq12d
⊢
x
=
4
→
4
x
x
<
(
2
x
x
)
↔
4
4
4
<
(
2
⋅
4
4
)
7
oveq2
⊢
x
=
n
→
4
x
=
4
n
8
id
⊢
x
=
n
→
x
=
n
9
7
8
oveq12d
⊢
x
=
n
→
4
x
x
=
4
n
n
10
oveq2
⊢
x
=
n
→
2
x
=
2
n
11
10
8
oveq12d
⊢
x
=
n
→
(
2
x
x
)
=
(
2
n
n
)
12
9
11
breq12d
⊢
x
=
n
→
4
x
x
<
(
2
x
x
)
↔
4
n
n
<
(
2
n
n
)
13
oveq2
⊢
x
=
n
+
1
→
4
x
=
4
n
+
1
14
id
⊢
x
=
n
+
1
→
x
=
n
+
1
15
13
14
oveq12d
⊢
x
=
n
+
1
→
4
x
x
=
4
n
+
1
n
+
1
16
oveq2
⊢
x
=
n
+
1
→
2
x
=
2
n
+
1
17
16
14
oveq12d
⊢
x
=
n
+
1
→
(
2
x
x
)
=
(
2
n
+
1
n
+
1
)
18
15
17
breq12d
⊢
x
=
n
+
1
→
4
x
x
<
(
2
x
x
)
↔
4
n
+
1
n
+
1
<
(
2
n
+
1
n
+
1
)
19
oveq2
⊢
x
=
N
→
4
x
=
4
N
20
id
⊢
x
=
N
→
x
=
N
21
19
20
oveq12d
⊢
x
=
N
→
4
x
x
=
4
N
N
22
oveq2
⊢
x
=
N
→
2
x
=
2
⋅
N
23
22
20
oveq12d
⊢
x
=
N
→
(
2
x
x
)
=
(
2
⋅
N
N
)
24
21
23
breq12d
⊢
x
=
N
→
4
x
x
<
(
2
x
x
)
↔
4
N
N
<
(
2
⋅
N
N
)
25
6nn0
⊢
6
∈
ℕ
0
26
7nn0
⊢
7
∈
ℕ
0
27
4nn0
⊢
4
∈
ℕ
0
28
0nn0
⊢
0
∈
ℕ
0
29
4lt10
⊢
4
<
10
30
6lt7
⊢
6
<
7
31
25
26
27
28
29
30
decltc
⊢
64
<
70
32
2cn
⊢
2
∈
ℂ
33
2nn0
⊢
2
∈
ℕ
0
34
3nn0
⊢
3
∈
ℕ
0
35
expmul
⊢
2
∈
ℂ
∧
2
∈
ℕ
0
∧
3
∈
ℕ
0
→
2
2
⋅
3
=
2
2
3
36
32
33
34
35
mp3an
⊢
2
2
⋅
3
=
2
2
3
37
sq2
⊢
2
2
=
4
38
37
eqcomi
⊢
4
=
2
2
39
4m1e3
⊢
4
−
1
=
3
40
38
39
oveq12i
⊢
4
4
−
1
=
2
2
3
41
36
40
eqtr4i
⊢
2
2
⋅
3
=
4
4
−
1
42
3cn
⊢
3
∈
ℂ
43
3t2e6
⊢
3
⋅
2
=
6
44
42
32
43
mulcomli
⊢
2
⋅
3
=
6
45
44
oveq2i
⊢
2
2
⋅
3
=
2
6
46
2exp6
⊢
2
6
=
64
47
45
46
eqtri
⊢
2
2
⋅
3
=
64
48
4cn
⊢
4
∈
ℂ
49
4ne0
⊢
4
≠
0
50
4z
⊢
4
∈
ℤ
51
expm1
⊢
4
∈
ℂ
∧
4
≠
0
∧
4
∈
ℤ
→
4
4
−
1
=
4
4
4
52
48
49
50
51
mp3an
⊢
4
4
−
1
=
4
4
4
53
41
47
52
3eqtr3ri
⊢
4
4
4
=
64
54
df-4
⊢
4
=
3
+
1
55
54
oveq2i
⊢
2
⋅
4
=
2
3
+
1
56
55
54
oveq12i
⊢
(
2
⋅
4
4
)
=
(
2
3
+
1
3
+
1
)
57
bcp1ctr
⊢
3
∈
ℕ
0
→
(
2
3
+
1
3
+
1
)
=
(
2
⋅
3
3
)
2
2
⋅
3
+
1
3
+
1
58
34
57
ax-mp
⊢
(
2
3
+
1
3
+
1
)
=
(
2
⋅
3
3
)
2
2
⋅
3
+
1
3
+
1
59
df-3
⊢
3
=
2
+
1
60
59
oveq2i
⊢
2
⋅
3
=
2
2
+
1
61
60
59
oveq12i
⊢
(
2
⋅
3
3
)
=
(
2
2
+
1
2
+
1
)
62
bcp1ctr
⊢
2
∈
ℕ
0
→
(
2
2
+
1
2
+
1
)
=
(
2
⋅
2
2
)
2
2
⋅
2
+
1
2
+
1
63
33
62
ax-mp
⊢
(
2
2
+
1
2
+
1
)
=
(
2
⋅
2
2
)
2
2
⋅
2
+
1
2
+
1
64
df-2
⊢
2
=
1
+
1
65
64
oveq2i
⊢
2
⋅
2
=
2
1
+
1
66
65
64
oveq12i
⊢
(
2
⋅
2
2
)
=
(
2
1
+
1
1
+
1
)
67
1nn0
⊢
1
∈
ℕ
0
68
bcp1ctr
⊢
1
∈
ℕ
0
→
(
2
1
+
1
1
+
1
)
=
(
2
⋅
1
1
)
2
2
⋅
1
+
1
1
+
1
69
67
68
ax-mp
⊢
(
2
1
+
1
1
+
1
)
=
(
2
⋅
1
1
)
2
2
⋅
1
+
1
1
+
1
70
1e0p1
⊢
1
=
0
+
1
71
70
oveq2i
⊢
2
⋅
1
=
2
0
+
1
72
71
70
oveq12i
⊢
(
2
⋅
1
1
)
=
(
2
0
+
1
0
+
1
)
73
bcp1ctr
⊢
0
∈
ℕ
0
→
(
2
0
+
1
0
+
1
)
=
(
2
⋅
0
0
)
2
2
⋅
0
+
1
0
+
1
74
28
73
ax-mp
⊢
(
2
0
+
1
0
+
1
)
=
(
2
⋅
0
0
)
2
2
⋅
0
+
1
0
+
1
75
33
28
nn0mulcli
⊢
2
⋅
0
∈
ℕ
0
76
bcn0
⊢
2
⋅
0
∈
ℕ
0
→
(
2
⋅
0
0
)
=
1
77
75
76
ax-mp
⊢
(
2
⋅
0
0
)
=
1
78
2t0e0
⊢
2
⋅
0
=
0
79
78
oveq1i
⊢
2
⋅
0
+
1
=
0
+
1
80
79
70
eqtr4i
⊢
2
⋅
0
+
1
=
1
81
70
eqcomi
⊢
0
+
1
=
1
82
80
81
oveq12i
⊢
2
⋅
0
+
1
0
+
1
=
1
1
83
1div1e1
⊢
1
1
=
1
84
82
83
eqtri
⊢
2
⋅
0
+
1
0
+
1
=
1
85
84
oveq2i
⊢
2
2
⋅
0
+
1
0
+
1
=
2
⋅
1
86
2t1e2
⊢
2
⋅
1
=
2
87
85
86
eqtri
⊢
2
2
⋅
0
+
1
0
+
1
=
2
88
77
87
oveq12i
⊢
(
2
⋅
0
0
)
2
2
⋅
0
+
1
0
+
1
=
1
⋅
2
89
32
mullidi
⊢
1
⋅
2
=
2
90
88
89
eqtri
⊢
(
2
⋅
0
0
)
2
2
⋅
0
+
1
0
+
1
=
2
91
72
74
90
3eqtri
⊢
(
2
⋅
1
1
)
=
2
92
86
oveq1i
⊢
2
⋅
1
+
1
=
2
+
1
93
92
59
eqtr4i
⊢
2
⋅
1
+
1
=
3
94
64
eqcomi
⊢
1
+
1
=
2
95
93
94
oveq12i
⊢
2
⋅
1
+
1
1
+
1
=
3
2
96
95
oveq2i
⊢
2
2
⋅
1
+
1
1
+
1
=
2
3
2
97
2ne0
⊢
2
≠
0
98
42
32
97
divcan2i
⊢
2
3
2
=
3
99
96
98
eqtri
⊢
2
2
⋅
1
+
1
1
+
1
=
3
100
91
99
oveq12i
⊢
(
2
⋅
1
1
)
2
2
⋅
1
+
1
1
+
1
=
2
⋅
3
101
100
44
eqtri
⊢
(
2
⋅
1
1
)
2
2
⋅
1
+
1
1
+
1
=
6
102
66
69
101
3eqtri
⊢
(
2
⋅
2
2
)
=
6
103
2t2e4
⊢
2
⋅
2
=
4
104
103
oveq1i
⊢
2
⋅
2
+
1
=
4
+
1
105
df-5
⊢
5
=
4
+
1
106
104
105
eqtr4i
⊢
2
⋅
2
+
1
=
5
107
59
eqcomi
⊢
2
+
1
=
3
108
106
107
oveq12i
⊢
2
⋅
2
+
1
2
+
1
=
5
3
109
108
oveq2i
⊢
2
2
⋅
2
+
1
2
+
1
=
2
5
3
110
5cn
⊢
5
∈
ℂ
111
3ne0
⊢
3
≠
0
112
32
110
42
111
divassi
⊢
2
⋅
5
3
=
2
5
3
113
109
112
eqtr4i
⊢
2
2
⋅
2
+
1
2
+
1
=
2
⋅
5
3
114
102
113
oveq12i
⊢
(
2
⋅
2
2
)
2
2
⋅
2
+
1
2
+
1
=
6
2
⋅
5
3
115
63
114
eqtri
⊢
(
2
2
+
1
2
+
1
)
=
6
2
⋅
5
3
116
6cn
⊢
6
∈
ℂ
117
2nn
⊢
2
∈
ℕ
118
5nn
⊢
5
∈
ℕ
119
117
118
nnmulcli
⊢
2
⋅
5
∈
ℕ
120
119
nncni
⊢
2
⋅
5
∈
ℂ
121
42
111
pm3.2i
⊢
3
∈
ℂ
∧
3
≠
0
122
div12
⊢
6
∈
ℂ
∧
2
⋅
5
∈
ℂ
∧
3
∈
ℂ
∧
3
≠
0
→
6
2
⋅
5
3
=
2
⋅
5
6
3
123
116
120
121
122
mp3an
⊢
6
2
⋅
5
3
=
2
⋅
5
6
3
124
5t2e10
⊢
5
⋅
2
=
10
125
110
32
124
mulcomli
⊢
2
⋅
5
=
10
126
116
42
32
111
divmuli
⊢
6
3
=
2
↔
3
⋅
2
=
6
127
43
126
mpbir
⊢
6
3
=
2
128
125
127
oveq12i
⊢
2
⋅
5
6
3
=
10
⋅
2
129
123
128
eqtri
⊢
6
2
⋅
5
3
=
10
⋅
2
130
61
115
129
3eqtri
⊢
(
2
⋅
3
3
)
=
10
⋅
2
131
44
oveq1i
⊢
2
⋅
3
+
1
=
6
+
1
132
df-7
⊢
7
=
6
+
1
133
131
132
eqtr4i
⊢
2
⋅
3
+
1
=
7
134
3p1e4
⊢
3
+
1
=
4
135
133
134
oveq12i
⊢
2
⋅
3
+
1
3
+
1
=
7
4
136
135
oveq2i
⊢
2
2
⋅
3
+
1
3
+
1
=
2
7
4
137
130
136
oveq12i
⊢
(
2
⋅
3
3
)
2
2
⋅
3
+
1
3
+
1
=
10
⋅
2
2
7
4
138
56
58
137
3eqtri
⊢
(
2
⋅
4
4
)
=
10
⋅
2
2
7
4
139
10nn
⊢
10
∈
ℕ
140
139
nncni
⊢
10
∈
ℂ
141
7cn
⊢
7
∈
ℂ
142
141
48
49
divcli
⊢
7
4
∈
ℂ
143
32
142
mulcli
⊢
2
7
4
∈
ℂ
144
140
32
143
mulassi
⊢
10
⋅
2
2
7
4
=
10
2
2
7
4
145
103
oveq1i
⊢
2
⋅
2
7
4
=
4
7
4
146
32
32
142
mulassi
⊢
2
⋅
2
7
4
=
2
2
7
4
147
141
48
49
divcan2i
⊢
4
7
4
=
7
148
145
146
147
3eqtr3i
⊢
2
2
7
4
=
7
149
148
oveq2i
⊢
10
2
2
7
4
=
10
⋅
7
150
144
149
eqtri
⊢
10
⋅
2
2
7
4
=
10
⋅
7
151
26
dec0u
⊢
10
⋅
7
=
70
152
138
150
151
3eqtri
⊢
(
2
⋅
4
4
)
=
70
153
31
53
152
3brtr4i
⊢
4
4
4
<
(
2
⋅
4
4
)
154
4nn
⊢
4
∈
ℕ
155
eluznn
⊢
4
∈
ℕ
∧
n
∈
ℤ
≥
4
→
n
∈
ℕ
156
154
155
mpan
⊢
n
∈
ℤ
≥
4
→
n
∈
ℕ
157
nnnn0
⊢
n
∈
ℕ
→
n
∈
ℕ
0
158
nnexpcl
⊢
4
∈
ℕ
∧
n
∈
ℕ
0
→
4
n
∈
ℕ
159
154
157
158
sylancr
⊢
n
∈
ℕ
→
4
n
∈
ℕ
160
159
nnrpd
⊢
n
∈
ℕ
→
4
n
∈
ℝ
+
161
nnrp
⊢
n
∈
ℕ
→
n
∈
ℝ
+
162
160
161
rpdivcld
⊢
n
∈
ℕ
→
4
n
n
∈
ℝ
+
163
162
rpred
⊢
n
∈
ℕ
→
4
n
n
∈
ℝ
164
nnmulcl
⊢
2
∈
ℕ
∧
n
∈
ℕ
→
2
n
∈
ℕ
165
117
164
mpan
⊢
n
∈
ℕ
→
2
n
∈
ℕ
166
165
nnnn0d
⊢
n
∈
ℕ
→
2
n
∈
ℕ
0
167
nnz
⊢
n
∈
ℕ
→
n
∈
ℤ
168
bccl
⊢
2
n
∈
ℕ
0
∧
n
∈
ℤ
→
(
2
n
n
)
∈
ℕ
0
169
166
167
168
syl2anc
⊢
n
∈
ℕ
→
(
2
n
n
)
∈
ℕ
0
170
169
nn0red
⊢
n
∈
ℕ
→
(
2
n
n
)
∈
ℝ
171
2rp
⊢
2
∈
ℝ
+
172
165
peano2nnd
⊢
n
∈
ℕ
→
2
n
+
1
∈
ℕ
173
172
nnrpd
⊢
n
∈
ℕ
→
2
n
+
1
∈
ℝ
+
174
peano2nn
⊢
n
∈
ℕ
→
n
+
1
∈
ℕ
175
174
nnrpd
⊢
n
∈
ℕ
→
n
+
1
∈
ℝ
+
176
173
175
rpdivcld
⊢
n
∈
ℕ
→
2
n
+
1
n
+
1
∈
ℝ
+
177
rpmulcl
⊢
2
∈
ℝ
+
∧
2
n
+
1
n
+
1
∈
ℝ
+
→
2
2
n
+
1
n
+
1
∈
ℝ
+
178
171
176
177
sylancr
⊢
n
∈
ℕ
→
2
2
n
+
1
n
+
1
∈
ℝ
+
179
163
170
178
ltmul1d
⊢
n
∈
ℕ
→
4
n
n
<
(
2
n
n
)
↔
4
n
n
2
2
n
+
1
n
+
1
<
(
2
n
n
)
2
2
n
+
1
n
+
1
180
bcp1ctr
⊢
n
∈
ℕ
0
→
(
2
n
+
1
n
+
1
)
=
(
2
n
n
)
2
2
n
+
1
n
+
1
181
157
180
syl
⊢
n
∈
ℕ
→
(
2
n
+
1
n
+
1
)
=
(
2
n
n
)
2
2
n
+
1
n
+
1
182
181
breq2d
⊢
n
∈
ℕ
→
4
n
n
2
2
n
+
1
n
+
1
<
(
2
n
+
1
n
+
1
)
↔
4
n
n
2
2
n
+
1
n
+
1
<
(
2
n
n
)
2
2
n
+
1
n
+
1
183
179
182
bitr4d
⊢
n
∈
ℕ
→
4
n
n
<
(
2
n
n
)
↔
4
n
n
2
2
n
+
1
n
+
1
<
(
2
n
+
1
n
+
1
)
184
2re
⊢
2
∈
ℝ
185
184
a1i
⊢
n
∈
ℕ
→
2
∈
ℝ
186
173
161
rpdivcld
⊢
n
∈
ℕ
→
2
n
+
1
n
∈
ℝ
+
187
186
rpred
⊢
n
∈
ℕ
→
2
n
+
1
n
∈
ℝ
188
nnmulcl
⊢
4
n
∈
ℕ
∧
2
∈
ℕ
→
4
n
⋅
2
∈
ℕ
189
159
117
188
sylancl
⊢
n
∈
ℕ
→
4
n
⋅
2
∈
ℕ
190
189
nnrpd
⊢
n
∈
ℕ
→
4
n
⋅
2
∈
ℝ
+
191
190
175
rpdivcld
⊢
n
∈
ℕ
→
4
n
⋅
2
n
+
1
∈
ℝ
+
192
161
rpreccld
⊢
n
∈
ℕ
→
1
n
∈
ℝ
+
193
ltaddrp
⊢
2
∈
ℝ
∧
1
n
∈
ℝ
+
→
2
<
2
+
1
n
194
184
192
193
sylancr
⊢
n
∈
ℕ
→
2
<
2
+
1
n
195
165
nncnd
⊢
n
∈
ℕ
→
2
n
∈
ℂ
196
1cnd
⊢
n
∈
ℕ
→
1
∈
ℂ
197
nncn
⊢
n
∈
ℕ
→
n
∈
ℂ
198
nnne0
⊢
n
∈
ℕ
→
n
≠
0
199
195
196
197
198
divdird
⊢
n
∈
ℕ
→
2
n
+
1
n
=
2
n
n
+
1
n
200
32
a1i
⊢
n
∈
ℕ
→
2
∈
ℂ
201
200
197
198
divcan4d
⊢
n
∈
ℕ
→
2
n
n
=
2
202
201
oveq1d
⊢
n
∈
ℕ
→
2
n
n
+
1
n
=
2
+
1
n
203
199
202
eqtr2d
⊢
n
∈
ℕ
→
2
+
1
n
=
2
n
+
1
n
204
194
203
breqtrd
⊢
n
∈
ℕ
→
2
<
2
n
+
1
n
205
185
187
191
204
ltmul2dd
⊢
n
∈
ℕ
→
4
n
⋅
2
n
+
1
⋅
2
<
4
n
⋅
2
n
+
1
2
n
+
1
n
206
expp1
⊢
4
∈
ℂ
∧
n
∈
ℕ
0
→
4
n
+
1
=
4
n
⋅
4
207
48
157
206
sylancr
⊢
n
∈
ℕ
→
4
n
+
1
=
4
n
⋅
4
208
159
nncnd
⊢
n
∈
ℕ
→
4
n
∈
ℂ
209
208
200
200
mulassd
⊢
n
∈
ℕ
→
4
n
⋅
2
⋅
2
=
4
n
2
⋅
2
210
103
oveq2i
⊢
4
n
2
⋅
2
=
4
n
⋅
4
211
209
210
eqtrdi
⊢
n
∈
ℕ
→
4
n
⋅
2
⋅
2
=
4
n
⋅
4
212
207
211
eqtr4d
⊢
n
∈
ℕ
→
4
n
+
1
=
4
n
⋅
2
⋅
2
213
212
oveq1d
⊢
n
∈
ℕ
→
4
n
+
1
n
+
1
=
4
n
⋅
2
⋅
2
n
+
1
214
189
nncnd
⊢
n
∈
ℕ
→
4
n
⋅
2
∈
ℂ
215
174
nncnd
⊢
n
∈
ℕ
→
n
+
1
∈
ℂ
216
174
nnne0d
⊢
n
∈
ℕ
→
n
+
1
≠
0
217
214
200
215
216
div23d
⊢
n
∈
ℕ
→
4
n
⋅
2
⋅
2
n
+
1
=
4
n
⋅
2
n
+
1
⋅
2
218
213
217
eqtrd
⊢
n
∈
ℕ
→
4
n
+
1
n
+
1
=
4
n
⋅
2
n
+
1
⋅
2
219
208
200
197
198
div23d
⊢
n
∈
ℕ
→
4
n
⋅
2
n
=
4
n
n
⋅
2
220
219
oveq1d
⊢
n
∈
ℕ
→
4
n
⋅
2
n
2
n
+
1
n
+
1
=
4
n
n
⋅
2
2
n
+
1
n
+
1
221
172
nncnd
⊢
n
∈
ℕ
→
2
n
+
1
∈
ℂ
222
214
197
221
215
198
216
divmul24d
⊢
n
∈
ℕ
→
4
n
⋅
2
n
2
n
+
1
n
+
1
=
4
n
⋅
2
n
+
1
2
n
+
1
n
223
162
rpcnd
⊢
n
∈
ℕ
→
4
n
n
∈
ℂ
224
176
rpcnd
⊢
n
∈
ℕ
→
2
n
+
1
n
+
1
∈
ℂ
225
223
200
224
mulassd
⊢
n
∈
ℕ
→
4
n
n
⋅
2
2
n
+
1
n
+
1
=
4
n
n
2
2
n
+
1
n
+
1
226
220
222
225
3eqtr3rd
⊢
n
∈
ℕ
→
4
n
n
2
2
n
+
1
n
+
1
=
4
n
⋅
2
n
+
1
2
n
+
1
n
227
205
218
226
3brtr4d
⊢
n
∈
ℕ
→
4
n
+
1
n
+
1
<
4
n
n
2
2
n
+
1
n
+
1
228
174
nnnn0d
⊢
n
∈
ℕ
→
n
+
1
∈
ℕ
0
229
nnexpcl
⊢
4
∈
ℕ
∧
n
+
1
∈
ℕ
0
→
4
n
+
1
∈
ℕ
230
154
228
229
sylancr
⊢
n
∈
ℕ
→
4
n
+
1
∈
ℕ
231
230
nnrpd
⊢
n
∈
ℕ
→
4
n
+
1
∈
ℝ
+
232
231
175
rpdivcld
⊢
n
∈
ℕ
→
4
n
+
1
n
+
1
∈
ℝ
+
233
232
rpred
⊢
n
∈
ℕ
→
4
n
+
1
n
+
1
∈
ℝ
234
178
rpred
⊢
n
∈
ℕ
→
2
2
n
+
1
n
+
1
∈
ℝ
235
163
234
remulcld
⊢
n
∈
ℕ
→
4
n
n
2
2
n
+
1
n
+
1
∈
ℝ
236
nn0mulcl
⊢
2
∈
ℕ
0
∧
n
+
1
∈
ℕ
0
→
2
n
+
1
∈
ℕ
0
237
33
228
236
sylancr
⊢
n
∈
ℕ
→
2
n
+
1
∈
ℕ
0
238
174
nnzd
⊢
n
∈
ℕ
→
n
+
1
∈
ℤ
239
bccl
⊢
2
n
+
1
∈
ℕ
0
∧
n
+
1
∈
ℤ
→
(
2
n
+
1
n
+
1
)
∈
ℕ
0
240
237
238
239
syl2anc
⊢
n
∈
ℕ
→
(
2
n
+
1
n
+
1
)
∈
ℕ
0
241
240
nn0red
⊢
n
∈
ℕ
→
(
2
n
+
1
n
+
1
)
∈
ℝ
242
lttr
⊢
4
n
+
1
n
+
1
∈
ℝ
∧
4
n
n
2
2
n
+
1
n
+
1
∈
ℝ
∧
(
2
n
+
1
n
+
1
)
∈
ℝ
→
4
n
+
1
n
+
1
<
4
n
n
2
2
n
+
1
n
+
1
∧
4
n
n
2
2
n
+
1
n
+
1
<
(
2
n
+
1
n
+
1
)
→
4
n
+
1
n
+
1
<
(
2
n
+
1
n
+
1
)
243
233
235
241
242
syl3anc
⊢
n
∈
ℕ
→
4
n
+
1
n
+
1
<
4
n
n
2
2
n
+
1
n
+
1
∧
4
n
n
2
2
n
+
1
n
+
1
<
(
2
n
+
1
n
+
1
)
→
4
n
+
1
n
+
1
<
(
2
n
+
1
n
+
1
)
244
227
243
mpand
⊢
n
∈
ℕ
→
4
n
n
2
2
n
+
1
n
+
1
<
(
2
n
+
1
n
+
1
)
→
4
n
+
1
n
+
1
<
(
2
n
+
1
n
+
1
)
245
183
244
sylbid
⊢
n
∈
ℕ
→
4
n
n
<
(
2
n
n
)
→
4
n
+
1
n
+
1
<
(
2
n
+
1
n
+
1
)
246
156
245
syl
⊢
n
∈
ℤ
≥
4
→
4
n
n
<
(
2
n
n
)
→
4
n
+
1
n
+
1
<
(
2
n
+
1
n
+
1
)
247
6
12
18
24
153
246
uzind4i
⊢
N
∈
ℤ
≥
4
→
4
N
N
<
(
2
⋅
N
N
)