Metamath Proof Explorer


Theorem bernneq

Description: Bernoulli's inequality, due to Johan Bernoulli (1667-1748). (Contributed by NM, 21-Feb-2005)

Ref Expression
Assertion bernneq AN01A1+A N1+AN

Proof

Step Hyp Ref Expression
1 oveq2 j=0Aj=A0
2 1 oveq2d j=01+Aj=1+A0
3 oveq2 j=01+Aj=1+A0
4 2 3 breq12d j=01+Aj1+Aj1+A01+A0
5 4 imbi2d j=0A1A1+Aj1+AjA1A1+A01+A0
6 oveq2 j=kAj=Ak
7 6 oveq2d j=k1+Aj=1+Ak
8 oveq2 j=k1+Aj=1+Ak
9 7 8 breq12d j=k1+Aj1+Aj1+Ak1+Ak
10 9 imbi2d j=kA1A1+Aj1+AjA1A1+Ak1+Ak
11 oveq2 j=k+1Aj=Ak+1
12 11 oveq2d j=k+11+Aj=1+Ak+1
13 oveq2 j=k+11+Aj=1+Ak+1
14 12 13 breq12d j=k+11+Aj1+Aj1+Ak+11+Ak+1
15 14 imbi2d j=k+1A1A1+Aj1+AjA1A1+Ak+11+Ak+1
16 oveq2 j=NAj=A N
17 16 oveq2d j=N1+Aj=1+A N
18 oveq2 j=N1+Aj=1+AN
19 17 18 breq12d j=N1+Aj1+Aj1+A N1+AN
20 19 imbi2d j=NA1A1+Aj1+AjA1A1+A N1+AN
21 recn AA
22 mul01 AA0=0
23 22 oveq2d A1+A0=1+0
24 1p0e1 1+0=1
25 23 24 eqtrdi A1+A0=1
26 1le1 11
27 ax-1cn 1
28 addcl 1A1+A
29 27 28 mpan A1+A
30 exp0 1+A1+A0=1
31 29 30 syl A1+A0=1
32 26 31 breqtrrid A11+A0
33 25 32 eqbrtrd A1+A01+A0
34 21 33 syl A1+A01+A0
35 34 adantr A1A1+A01+A0
36 1re 1
37 nn0re k0k
38 remulcl AkAk
39 37 38 sylan2 Ak0Ak
40 readdcl 1Ak1+Ak
41 36 39 40 sylancr Ak01+Ak
42 simpl Ak0A
43 readdcl 1+AkA1+Ak+A
44 41 42 43 syl2anc Ak01+Ak+A
45 44 adantr Ak01A1+Ak1+Ak1+Ak+A
46 readdcl 1A1+A
47 36 46 mpan A1+A
48 47 adantr Ak01+A
49 41 48 remulcld Ak01+Ak1+A
50 49 adantr Ak01A1+Ak1+Ak1+Ak1+A
51 reexpcl 1+Ak01+Ak
52 47 51 sylan Ak01+Ak
53 52 48 remulcld Ak01+Ak1+A
54 53 adantr Ak01A1+Ak1+Ak1+Ak1+A
55 remulcl AAAA
56 55 anidms AAA
57 msqge0 A0AA
58 56 57 jca AAA0AA
59 nn0ge0 k00k
60 37 59 jca k0k0k
61 mulge0 AA0AAk0k0AAk
62 58 60 61 syl2an Ak00AAk
63 21 adantr Ak0A
64 nn0cn k0k
65 64 adantl Ak0k
66 63 63 65 mul32d Ak0AAk=AkA
67 62 66 breqtrd Ak00AkA
68 simpl AkA
69 38 68 remulcld AkAkA
70 37 69 sylan2 Ak0AkA
71 44 70 addge01d Ak00AkA1+Ak+A1+Ak+A+AkA
72 67 71 mpbid Ak01+Ak+A1+Ak+A+AkA
73 mulcl AkAk
74 addcl 1Ak1+Ak
75 27 73 74 sylancr Ak1+Ak
76 simpl AkA
77 73 76 mulcld AkAkA
78 75 76 77 addassd Ak1+Ak+A+AkA=1+Ak+A+AkA
79 muladd11 AkA1+Ak1+A=1+Ak+A+AkA
80 73 76 79 syl2anc Ak1+Ak1+A=1+Ak+A+AkA
81 78 80 eqtr4d Ak1+Ak+A+AkA=1+Ak1+A
82 21 64 81 syl2an Ak01+Ak+A+AkA=1+Ak1+A
83 72 82 breqtrd Ak01+Ak+A1+Ak1+A
84 83 adantr Ak01A1+Ak1+Ak1+Ak+A1+Ak1+A
85 41 adantr Ak01A1+Ak1+Ak1+Ak
86 52 adantr Ak01A1+Ak1+Ak1+Ak
87 48 adantr Ak01A1+Ak1+Ak1+A
88 neg1rr 1
89 leadd2 1A11A1+-11+A
90 88 36 89 mp3an13 A1A1+-11+A
91 1pneg1e0 1+-1=0
92 91 breq1i 1+-11+A01+A
93 90 92 bitrdi A1A01+A
94 93 biimpa A1A01+A
95 94 ad2ant2r Ak01A1+Ak1+Ak01+A
96 simprr Ak01A1+Ak1+Ak1+Ak1+Ak
97 85 86 87 95 96 lemul1ad Ak01A1+Ak1+Ak1+Ak1+A1+Ak1+A
98 45 50 54 84 97 letrd Ak01A1+Ak1+Ak1+Ak+A1+Ak1+A
99 adddi Ak1Ak+1=Ak+A1
100 27 99 mp3an3 AkAk+1=Ak+A1
101 mulrid AA1=A
102 101 adantr AkA1=A
103 102 oveq2d AkAk+A1=Ak+A
104 100 103 eqtrd AkAk+1=Ak+A
105 104 oveq2d Ak1+Ak+1=1+Ak+A
106 addass 1AkA1+Ak+A=1+Ak+A
107 27 73 76 106 mp3an2i Ak1+Ak+A=1+Ak+A
108 105 107 eqtr4d Ak1+Ak+1=1+Ak+A
109 21 64 108 syl2an Ak01+Ak+1=1+Ak+A
110 109 adantr Ak01A1+Ak1+Ak1+Ak+1=1+Ak+A
111 27 21 28 sylancr A1+A
112 expp1 1+Ak01+Ak+1=1+Ak1+A
113 111 112 sylan Ak01+Ak+1=1+Ak1+A
114 113 adantr Ak01A1+Ak1+Ak1+Ak+1=1+Ak1+A
115 98 110 114 3brtr4d Ak01A1+Ak1+Ak1+Ak+11+Ak+1
116 115 exp43 Ak01A1+Ak1+Ak1+Ak+11+Ak+1
117 116 com12 k0A1A1+Ak1+Ak1+Ak+11+Ak+1
118 117 impd k0A1A1+Ak1+Ak1+Ak+11+Ak+1
119 118 a2d k0A1A1+Ak1+AkA1A1+Ak+11+Ak+1
120 5 10 15 20 35 119 nn0ind N0A1A1+A N1+AN
121 120 expd N0A1A1+A N1+AN
122 121 3imp21 AN01A1+A N1+AN