Step |
Hyp |
Ref |
Expression |
1 |
|
binomcxp.a |
|
2 |
|
binomcxp.b |
|
3 |
|
binomcxp.lt |
|
4 |
|
binomcxp.c |
|
5 |
|
nn0uz |
|
6 |
|
0zd |
|
7 |
|
peano2cn |
|
8 |
4 7
|
syl |
|
9 |
|
1zzd |
|
10 |
|
nn0ex |
|
11 |
10
|
mptex |
|
12 |
11
|
a1i |
|
13 |
|
eqidd |
|
14 |
|
simpr |
|
15 |
14
|
oveq1d |
|
16 |
15
|
oveq2d |
|
17 |
|
simpr |
|
18 |
|
ovexd |
|
19 |
13 16 17 18
|
fvmptd |
|
20 |
5 6 8 9 12 19
|
divcnvshft |
|
21 |
|
ovexd |
|
22 |
|
nn0cn |
|
23 |
|
1cnd |
|
24 |
22 23
|
addcld |
|
25 |
|
nn0p1nn |
|
26 |
25
|
nnne0d |
|
27 |
24 26
|
dividd |
|
28 |
27
|
mpteq2ia |
|
29 |
|
fconstmpt |
|
30 |
28 29
|
eqtr4i |
|
31 |
|
ax-1cn |
|
32 |
|
0z |
|
33 |
5
|
eqimss2i |
|
34 |
33 10
|
climconst2 |
|
35 |
31 32 34
|
mp2an |
|
36 |
30 35
|
eqbrtri |
|
37 |
36
|
a1i |
|
38 |
4
|
adantr |
|
39 |
|
1cnd |
|
40 |
38 39
|
addcld |
|
41 |
17
|
nn0cnd |
|
42 |
41 39
|
addcld |
|
43 |
|
nn0p1nn |
|
44 |
43
|
nnne0d |
|
45 |
44
|
adantl |
|
46 |
40 42 45
|
divcld |
|
47 |
19 46
|
eqeltrd |
|
48 |
|
eqidd |
|
49 |
15 15
|
oveq12d |
|
50 |
|
ovexd |
|
51 |
48 49 17 50
|
fvmptd |
|
52 |
42 42 45
|
divcld |
|
53 |
51 52
|
eqeltrd |
|
54 |
|
ovex |
|
55 |
|
eqid |
|
56 |
54 55
|
fnmpti |
|
57 |
56
|
a1i |
|
58 |
|
ovex |
|
59 |
|
eqid |
|
60 |
58 59
|
fnmpti |
|
61 |
60
|
a1i |
|
62 |
10
|
a1i |
|
63 |
|
inidm |
|
64 |
|
eqidd |
|
65 |
|
eqidd |
|
66 |
57 61 62 62 63 64 65
|
ofval |
|
67 |
5 6 20 21 37 47 53 66
|
climsub |
|
68 |
|
ovexd |
|
69 |
|
ovexd |
|
70 |
|
eqidd |
|
71 |
|
eqidd |
|
72 |
62 68 69 70 71
|
offval2 |
|
73 |
8
|
adantr |
|
74 |
24
|
adantl |
|
75 |
26
|
adantl |
|
76 |
73 74 74 75
|
divsubdird |
|
77 |
4
|
adantr |
|
78 |
22
|
adantl |
|
79 |
|
1cnd |
|
80 |
77 78 79
|
pnpcan2d |
|
81 |
80
|
oveq1d |
|
82 |
76 81
|
eqtr3d |
|
83 |
82
|
mpteq2dva |
|
84 |
72 83
|
eqtrd |
|
85 |
|
df-neg |
|
86 |
85
|
eqcomi |
|
87 |
86
|
a1i |
|
88 |
67 84 87
|
3brtr3d |
|
89 |
10
|
mptex |
|
90 |
89
|
a1i |
|
91 |
|
eqidd |
|
92 |
|
oveq2 |
|
93 |
|
oveq1 |
|
94 |
92 93
|
oveq12d |
|
95 |
94
|
adantl |
|
96 |
|
ovexd |
|
97 |
91 95 17 96
|
fvmptd |
|
98 |
38 41
|
subcld |
|
99 |
98 42 45
|
divcld |
|
100 |
97 99
|
eqeltrd |
|
101 |
|
eqidd |
|
102 |
94
|
fveq2d |
|
103 |
102
|
adantl |
|
104 |
|
fvexd |
|
105 |
101 103 17 104
|
fvmptd |
|
106 |
97
|
fveq2d |
|
107 |
105 106
|
eqtr4d |
|
108 |
5 88 90 6 100 107
|
climabs |
|
109 |
31
|
absnegi |
|
110 |
|
abs1 |
|
111 |
109 110
|
eqtri |
|
112 |
108 111
|
breqtrdi |
|