Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|
2 |
|
2nn |
|
3 |
2
|
a1i |
|
4 |
|
simpr |
|
5 |
3 4
|
nnexpcld |
|
6 |
1 5
|
zmodcld |
|
7 |
6
|
nn0zd |
|
8 |
7
|
znegcld |
|
9 |
|
sadadd |
|
10 |
8 1 9
|
syl2anc |
|
11 |
|
sadadd |
|
12 |
8 7 11
|
syl2anc |
|
13 |
8
|
zcnd |
|
14 |
7
|
zcnd |
|
15 |
13 14
|
addcomd |
|
16 |
14
|
negidd |
|
17 |
15 16
|
eqtrd |
|
18 |
17
|
fveq2d |
|
19 |
|
0bits |
|
20 |
18 19
|
eqtrdi |
|
21 |
12 20
|
eqtrd |
|
22 |
21
|
oveq1d |
|
23 |
|
bitsss |
|
24 |
|
bitsss |
|
25 |
|
inss1 |
|
26 |
|
bitsss |
|
27 |
26
|
a1i |
|
28 |
25 27
|
sstrid |
|
29 |
|
sadass |
|
30 |
23 24 28 29
|
mp3an12i |
|
31 |
|
bitsmod |
|
32 |
31
|
oveq1d |
|
33 |
|
inss1 |
|
34 |
33 27
|
sstrid |
|
35 |
|
fzouzdisj |
|
36 |
35
|
ineq2i |
|
37 |
|
inindi |
|
38 |
|
in0 |
|
39 |
36 37 38
|
3eqtr3i |
|
40 |
39
|
a1i |
|
41 |
34 28 40
|
saddisj |
|
42 |
|
indi |
|
43 |
41 42
|
eqtr4di |
|
44 |
|
nn0uz |
|
45 |
4 44
|
eleqtrdi |
|
46 |
|
fzouzsplit |
|
47 |
45 46
|
syl |
|
48 |
44 47
|
eqtrid |
|
49 |
26 48
|
sseqtrid |
|
50 |
|
df-ss |
|
51 |
49 50
|
sylib |
|
52 |
43 51
|
eqtrd |
|
53 |
32 52
|
eqtrd |
|
54 |
53
|
oveq2d |
|
55 |
30 54
|
eqtrd |
|
56 |
|
sadid2 |
|
57 |
28 56
|
syl |
|
58 |
22 55 57
|
3eqtr3d |
|
59 |
1
|
zcnd |
|
60 |
13 59
|
addcomd |
|
61 |
59 14
|
negsubd |
|
62 |
59 14
|
subcld |
|
63 |
5
|
nncnd |
|
64 |
5
|
nnne0d |
|
65 |
62 63 64
|
divcan1d |
|
66 |
1
|
zred |
|
67 |
5
|
nnrpd |
|
68 |
|
moddiffl |
|
69 |
66 67 68
|
syl2anc |
|
70 |
69
|
oveq1d |
|
71 |
61 65 70
|
3eqtr2d |
|
72 |
60 71
|
eqtrd |
|
73 |
72
|
fveq2d |
|
74 |
10 58 73
|
3eqtr3d |
|