Metamath Proof Explorer


Theorem bpoly2

Description: The Bernoulli polynomials at two. (Contributed by Scott Fenton, 8-Jul-2015)

Ref Expression
Assertion bpoly2 X2BernPolyX=X2-X+16

Proof

Step Hyp Ref Expression
1 2nn0 20
2 bpolyval 20X2BernPolyX=X2k=021(2k)kBernPolyX2-k+1
3 1 2 mpan X2BernPolyX=X2k=021(2k)kBernPolyX2-k+1
4 2m1e1 21=1
5 0p1e1 0+1=1
6 4 5 eqtr4i 21=0+1
7 6 oveq2i 021=00+1
8 7 sumeq1i k=021(2k)kBernPolyX2-k+1=k=00+1(2k)kBernPolyX2-k+1
9 0nn0 00
10 nn0uz 0=0
11 9 10 eleqtri 00
12 11 a1i X00
13 0z 0
14 fzpr 000+1=00+1
15 13 14 ax-mp 00+1=00+1
16 15 eleq2i k00+1k00+1
17 vex kV
18 17 elpr k00+1k=0k=0+1
19 16 18 bitri k00+1k=0k=0+1
20 oveq2 k=0(2k)=(20)
21 bcn0 20(20)=1
22 1 21 ax-mp (20)=1
23 20 22 eqtrdi k=0(2k)=1
24 oveq1 k=0kBernPolyX=0BernPolyX
25 oveq2 k=02k=20
26 25 oveq1d k=02-k+1=2-0+1
27 2cn 2
28 27 subid1i 20=2
29 28 oveq1i 2-0+1=2+1
30 df-3 3=2+1
31 29 30 eqtr4i 2-0+1=3
32 26 31 eqtrdi k=02-k+1=3
33 24 32 oveq12d k=0kBernPolyX2-k+1=0BernPolyX3
34 23 33 oveq12d k=0(2k)kBernPolyX2-k+1=10BernPolyX3
35 bpoly0 X0BernPolyX=1
36 35 oveq1d X0BernPolyX3=13
37 36 oveq2d X10BernPolyX3=113
38 3cn 3
39 3ne0 30
40 38 39 reccli 13
41 40 mullidi 113=13
42 37 41 eqtrdi X10BernPolyX3=13
43 34 42 sylan9eqr Xk=0(2k)kBernPolyX2-k+1=13
44 43 40 eqeltrdi Xk=0(2k)kBernPolyX2-k+1
45 5 eqeq2i k=0+1k=1
46 oveq2 k=1(2k)=(21)
47 bcn1 20(21)=2
48 1 47 ax-mp (21)=2
49 46 48 eqtrdi k=1(2k)=2
50 oveq1 k=1kBernPolyX=1BernPolyX
51 oveq2 k=12k=21
52 51 oveq1d k=12-k+1=2-1+1
53 ax-1cn 1
54 npcan 212-1+1=2
55 27 53 54 mp2an 2-1+1=2
56 52 55 eqtrdi k=12-k+1=2
57 50 56 oveq12d k=1kBernPolyX2-k+1=1BernPolyX2
58 49 57 oveq12d k=1(2k)kBernPolyX2-k+1=21BernPolyX2
59 45 58 sylbi k=0+1(2k)kBernPolyX2-k+1=21BernPolyX2
60 bpoly1 X1BernPolyX=X12
61 60 oveq1d X1BernPolyX2=X122
62 61 oveq2d X21BernPolyX2=2X122
63 halfcn 12
64 subcl X12X12
65 63 64 mpan2 XX12
66 2ne0 20
67 divcan2 X122202X122=X12
68 27 66 67 mp3an23 X122X122=X12
69 65 68 syl X2X122=X12
70 62 69 eqtrd X21BernPolyX2=X12
71 59 70 sylan9eqr Xk=0+1(2k)kBernPolyX2-k+1=X12
72 65 adantr Xk=0+1X12
73 71 72 eqeltrd Xk=0+1(2k)kBernPolyX2-k+1
74 44 73 jaodan Xk=0k=0+1(2k)kBernPolyX2-k+1
75 19 74 sylan2b Xk00+1(2k)kBernPolyX2-k+1
76 12 75 59 fsump1 Xk=00+1(2k)kBernPolyX2-k+1=k=00(2k)kBernPolyX2-k+1+21BernPolyX2
77 42 40 eqeltrdi X10BernPolyX3
78 34 fsum1 010BernPolyX3k=00(2k)kBernPolyX2-k+1=10BernPolyX3
79 13 77 78 sylancr Xk=00(2k)kBernPolyX2-k+1=10BernPolyX3
80 79 42 eqtrd Xk=00(2k)kBernPolyX2-k+1=13
81 80 70 oveq12d Xk=00(2k)kBernPolyX2-k+1+21BernPolyX2=13+X-12
82 76 81 eqtrd Xk=00+1(2k)kBernPolyX2-k+1=13+X-12
83 addsub12 13X1213+X-12=X+13-12
84 40 63 83 mp3an13 X13+X-12=X+13-12
85 63 40 negsubdi2i 1213=1312
86 halfthird 1213=16
87 86 negeqi 1213=16
88 85 87 eqtr3i 1312=16
89 88 oveq2i X+13-12=X+16
90 84 89 eqtrdi X13+X-12=X+16
91 6cn 6
92 6re 6
93 6pos 0<6
94 92 93 gt0ne0ii 60
95 91 94 reccli 16
96 negsub X16X+16=X16
97 95 96 mpan2 XX+16=X16
98 82 90 97 3eqtrd Xk=00+1(2k)kBernPolyX2-k+1=X16
99 8 98 eqtrid Xk=021(2k)kBernPolyX2-k+1=X16
100 99 oveq2d XX2k=021(2k)kBernPolyX2-k+1=X2X16
101 sqcl XX2
102 subsub X2X16X2X16=X2-X+16
103 95 102 mp3an3 X2XX2X16=X2-X+16
104 101 103 mpancom XX2X16=X2-X+16
105 3 100 104 3eqtrd X2BernPolyX=X2-X+16