Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Bernoulli polynomials and sums of k-th powers
bpoly2
Next ⟩
bpoly3
Metamath Proof Explorer
Ascii
Unicode
Theorem
bpoly2
Description:
The Bernoulli polynomials at two.
(Contributed by
Scott Fenton
, 8-Jul-2015)
Ref
Expression
Assertion
bpoly2
⊢
X
∈
ℂ
→
2
BernPoly
X
=
X
2
-
X
+
1
6
Proof
Step
Hyp
Ref
Expression
1
2nn0
⊢
2
∈
ℕ
0
2
bpolyval
⊢
2
∈
ℕ
0
∧
X
∈
ℂ
→
2
BernPoly
X
=
X
2
−
∑
k
=
0
2
−
1
(
2
k
)
k
BernPoly
X
2
-
k
+
1
3
1
2
mpan
⊢
X
∈
ℂ
→
2
BernPoly
X
=
X
2
−
∑
k
=
0
2
−
1
(
2
k
)
k
BernPoly
X
2
-
k
+
1
4
2m1e1
⊢
2
−
1
=
1
5
0p1e1
⊢
0
+
1
=
1
6
4
5
eqtr4i
⊢
2
−
1
=
0
+
1
7
6
oveq2i
⊢
0
…
2
−
1
=
0
…
0
+
1
8
7
sumeq1i
⊢
∑
k
=
0
2
−
1
(
2
k
)
k
BernPoly
X
2
-
k
+
1
=
∑
k
=
0
0
+
1
(
2
k
)
k
BernPoly
X
2
-
k
+
1
9
0nn0
⊢
0
∈
ℕ
0
10
nn0uz
⊢
ℕ
0
=
ℤ
≥
0
11
9
10
eleqtri
⊢
0
∈
ℤ
≥
0
12
11
a1i
⊢
X
∈
ℂ
→
0
∈
ℤ
≥
0
13
0z
⊢
0
∈
ℤ
14
fzpr
⊢
0
∈
ℤ
→
0
…
0
+
1
=
0
0
+
1
15
13
14
ax-mp
⊢
0
…
0
+
1
=
0
0
+
1
16
15
eleq2i
⊢
k
∈
0
…
0
+
1
↔
k
∈
0
0
+
1
17
vex
⊢
k
∈
V
18
17
elpr
⊢
k
∈
0
0
+
1
↔
k
=
0
∨
k
=
0
+
1
19
16
18
bitri
⊢
k
∈
0
…
0
+
1
↔
k
=
0
∨
k
=
0
+
1
20
oveq2
⊢
k
=
0
→
(
2
k
)
=
(
2
0
)
21
bcn0
⊢
2
∈
ℕ
0
→
(
2
0
)
=
1
22
1
21
ax-mp
⊢
(
2
0
)
=
1
23
20
22
eqtrdi
⊢
k
=
0
→
(
2
k
)
=
1
24
oveq1
⊢
k
=
0
→
k
BernPoly
X
=
0
BernPoly
X
25
oveq2
⊢
k
=
0
→
2
−
k
=
2
−
0
26
25
oveq1d
⊢
k
=
0
→
2
-
k
+
1
=
2
-
0
+
1
27
2cn
⊢
2
∈
ℂ
28
27
subid1i
⊢
2
−
0
=
2
29
28
oveq1i
⊢
2
-
0
+
1
=
2
+
1
30
df-3
⊢
3
=
2
+
1
31
29
30
eqtr4i
⊢
2
-
0
+
1
=
3
32
26
31
eqtrdi
⊢
k
=
0
→
2
-
k
+
1
=
3
33
24
32
oveq12d
⊢
k
=
0
→
k
BernPoly
X
2
-
k
+
1
=
0
BernPoly
X
3
34
23
33
oveq12d
⊢
k
=
0
→
(
2
k
)
k
BernPoly
X
2
-
k
+
1
=
1
0
BernPoly
X
3
35
bpoly0
⊢
X
∈
ℂ
→
0
BernPoly
X
=
1
36
35
oveq1d
⊢
X
∈
ℂ
→
0
BernPoly
X
3
=
1
3
37
36
oveq2d
⊢
X
∈
ℂ
→
1
0
BernPoly
X
3
=
1
1
3
38
3cn
⊢
3
∈
ℂ
39
3ne0
⊢
3
≠
0
40
38
39
reccli
⊢
1
3
∈
ℂ
41
40
mullidi
⊢
1
1
3
=
1
3
42
37
41
eqtrdi
⊢
X
∈
ℂ
→
1
0
BernPoly
X
3
=
1
3
43
34
42
sylan9eqr
⊢
X
∈
ℂ
∧
k
=
0
→
(
2
k
)
k
BernPoly
X
2
-
k
+
1
=
1
3
44
43
40
eqeltrdi
⊢
X
∈
ℂ
∧
k
=
0
→
(
2
k
)
k
BernPoly
X
2
-
k
+
1
∈
ℂ
45
5
eqeq2i
⊢
k
=
0
+
1
↔
k
=
1
46
oveq2
⊢
k
=
1
→
(
2
k
)
=
(
2
1
)
47
bcn1
⊢
2
∈
ℕ
0
→
(
2
1
)
=
2
48
1
47
ax-mp
⊢
(
2
1
)
=
2
49
46
48
eqtrdi
⊢
k
=
1
→
(
2
k
)
=
2
50
oveq1
⊢
k
=
1
→
k
BernPoly
X
=
1
BernPoly
X
51
oveq2
⊢
k
=
1
→
2
−
k
=
2
−
1
52
51
oveq1d
⊢
k
=
1
→
2
-
k
+
1
=
2
-
1
+
1
53
ax-1cn
⊢
1
∈
ℂ
54
npcan
⊢
2
∈
ℂ
∧
1
∈
ℂ
→
2
-
1
+
1
=
2
55
27
53
54
mp2an
⊢
2
-
1
+
1
=
2
56
52
55
eqtrdi
⊢
k
=
1
→
2
-
k
+
1
=
2
57
50
56
oveq12d
⊢
k
=
1
→
k
BernPoly
X
2
-
k
+
1
=
1
BernPoly
X
2
58
49
57
oveq12d
⊢
k
=
1
→
(
2
k
)
k
BernPoly
X
2
-
k
+
1
=
2
1
BernPoly
X
2
59
45
58
sylbi
⊢
k
=
0
+
1
→
(
2
k
)
k
BernPoly
X
2
-
k
+
1
=
2
1
BernPoly
X
2
60
bpoly1
⊢
X
∈
ℂ
→
1
BernPoly
X
=
X
−
1
2
61
60
oveq1d
⊢
X
∈
ℂ
→
1
BernPoly
X
2
=
X
−
1
2
2
62
61
oveq2d
⊢
X
∈
ℂ
→
2
1
BernPoly
X
2
=
2
X
−
1
2
2
63
halfcn
⊢
1
2
∈
ℂ
64
subcl
⊢
X
∈
ℂ
∧
1
2
∈
ℂ
→
X
−
1
2
∈
ℂ
65
63
64
mpan2
⊢
X
∈
ℂ
→
X
−
1
2
∈
ℂ
66
2ne0
⊢
2
≠
0
67
divcan2
⊢
X
−
1
2
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
2
X
−
1
2
2
=
X
−
1
2
68
27
66
67
mp3an23
⊢
X
−
1
2
∈
ℂ
→
2
X
−
1
2
2
=
X
−
1
2
69
65
68
syl
⊢
X
∈
ℂ
→
2
X
−
1
2
2
=
X
−
1
2
70
62
69
eqtrd
⊢
X
∈
ℂ
→
2
1
BernPoly
X
2
=
X
−
1
2
71
59
70
sylan9eqr
⊢
X
∈
ℂ
∧
k
=
0
+
1
→
(
2
k
)
k
BernPoly
X
2
-
k
+
1
=
X
−
1
2
72
65
adantr
⊢
X
∈
ℂ
∧
k
=
0
+
1
→
X
−
1
2
∈
ℂ
73
71
72
eqeltrd
⊢
X
∈
ℂ
∧
k
=
0
+
1
→
(
2
k
)
k
BernPoly
X
2
-
k
+
1
∈
ℂ
74
44
73
jaodan
⊢
X
∈
ℂ
∧
k
=
0
∨
k
=
0
+
1
→
(
2
k
)
k
BernPoly
X
2
-
k
+
1
∈
ℂ
75
19
74
sylan2b
⊢
X
∈
ℂ
∧
k
∈
0
…
0
+
1
→
(
2
k
)
k
BernPoly
X
2
-
k
+
1
∈
ℂ
76
12
75
59
fsump1
⊢
X
∈
ℂ
→
∑
k
=
0
0
+
1
(
2
k
)
k
BernPoly
X
2
-
k
+
1
=
∑
k
=
0
0
(
2
k
)
k
BernPoly
X
2
-
k
+
1
+
2
1
BernPoly
X
2
77
42
40
eqeltrdi
⊢
X
∈
ℂ
→
1
0
BernPoly
X
3
∈
ℂ
78
34
fsum1
⊢
0
∈
ℤ
∧
1
0
BernPoly
X
3
∈
ℂ
→
∑
k
=
0
0
(
2
k
)
k
BernPoly
X
2
-
k
+
1
=
1
0
BernPoly
X
3
79
13
77
78
sylancr
⊢
X
∈
ℂ
→
∑
k
=
0
0
(
2
k
)
k
BernPoly
X
2
-
k
+
1
=
1
0
BernPoly
X
3
80
79
42
eqtrd
⊢
X
∈
ℂ
→
∑
k
=
0
0
(
2
k
)
k
BernPoly
X
2
-
k
+
1
=
1
3
81
80
70
oveq12d
⊢
X
∈
ℂ
→
∑
k
=
0
0
(
2
k
)
k
BernPoly
X
2
-
k
+
1
+
2
1
BernPoly
X
2
=
1
3
+
X
-
1
2
82
76
81
eqtrd
⊢
X
∈
ℂ
→
∑
k
=
0
0
+
1
(
2
k
)
k
BernPoly
X
2
-
k
+
1
=
1
3
+
X
-
1
2
83
addsub12
⊢
1
3
∈
ℂ
∧
X
∈
ℂ
∧
1
2
∈
ℂ
→
1
3
+
X
-
1
2
=
X
+
1
3
-
1
2
84
40
63
83
mp3an13
⊢
X
∈
ℂ
→
1
3
+
X
-
1
2
=
X
+
1
3
-
1
2
85
63
40
negsubdi2i
⊢
−
1
2
−
1
3
=
1
3
−
1
2
86
halfthird
⊢
1
2
−
1
3
=
1
6
87
86
negeqi
⊢
−
1
2
−
1
3
=
−
1
6
88
85
87
eqtr3i
⊢
1
3
−
1
2
=
−
1
6
89
88
oveq2i
⊢
X
+
1
3
-
1
2
=
X
+
−
1
6
90
84
89
eqtrdi
⊢
X
∈
ℂ
→
1
3
+
X
-
1
2
=
X
+
−
1
6
91
6cn
⊢
6
∈
ℂ
92
6re
⊢
6
∈
ℝ
93
6pos
⊢
0
<
6
94
92
93
gt0ne0ii
⊢
6
≠
0
95
91
94
reccli
⊢
1
6
∈
ℂ
96
negsub
⊢
X
∈
ℂ
∧
1
6
∈
ℂ
→
X
+
−
1
6
=
X
−
1
6
97
95
96
mpan2
⊢
X
∈
ℂ
→
X
+
−
1
6
=
X
−
1
6
98
82
90
97
3eqtrd
⊢
X
∈
ℂ
→
∑
k
=
0
0
+
1
(
2
k
)
k
BernPoly
X
2
-
k
+
1
=
X
−
1
6
99
8
98
eqtrid
⊢
X
∈
ℂ
→
∑
k
=
0
2
−
1
(
2
k
)
k
BernPoly
X
2
-
k
+
1
=
X
−
1
6
100
99
oveq2d
⊢
X
∈
ℂ
→
X
2
−
∑
k
=
0
2
−
1
(
2
k
)
k
BernPoly
X
2
-
k
+
1
=
X
2
−
X
−
1
6
101
sqcl
⊢
X
∈
ℂ
→
X
2
∈
ℂ
102
subsub
⊢
X
2
∈
ℂ
∧
X
∈
ℂ
∧
1
6
∈
ℂ
→
X
2
−
X
−
1
6
=
X
2
-
X
+
1
6
103
95
102
mp3an3
⊢
X
2
∈
ℂ
∧
X
∈
ℂ
→
X
2
−
X
−
1
6
=
X
2
-
X
+
1
6
104
101
103
mpancom
⊢
X
∈
ℂ
→
X
2
−
X
−
1
6
=
X
2
-
X
+
1
6
105
3
100
104
3eqtrd
⊢
X
∈
ℂ
→
2
BernPoly
X
=
X
2
-
X
+
1
6