Metamath Proof Explorer


Theorem cau3lem

Description: Lemma for cau3 . (Contributed by Mario Carneiro, 15-Feb-2014) (Revised by Mario Carneiro, 1-May-2014)

Ref Expression
Hypotheses cau3lem.1 Z
cau3lem.2 τψ
cau3lem.3 Fk=Fjψχ
cau3lem.4 Fk=Fmψθ
cau3lem.5 φχψGFjDFk=GFkDFj
cau3lem.6 φθχGFmDFj=GFjDFm
cau3lem.7 φψθχxGFkDFj<x2GFjDFm<x2GFkDFm<x
Assertion cau3lem φx+jZkjτGFkDFj<xx+jZkjτmkGFkDFm<x

Proof

Step Hyp Ref Expression
1 cau3lem.1 Z
2 cau3lem.2 τψ
3 cau3lem.3 Fk=Fjψχ
4 cau3lem.4 Fk=Fmψθ
5 cau3lem.5 φχψGFjDFk=GFkDFj
6 cau3lem.6 φθχGFmDFj=GFjDFm
7 cau3lem.7 φψθχxGFkDFj<x2GFjDFm<x2GFkDFm<x
8 breq2 x=zGFkDFj<xGFkDFj<z
9 8 anbi2d x=zτGFkDFj<xτGFkDFj<z
10 9 rexralbidv x=zjZkjτGFkDFj<xjZkjτGFkDFj<z
11 10 cbvralvw x+jZkjτGFkDFj<xz+jZkjτGFkDFj<z
12 rphalfcl x+x2+
13 breq2 z=x2GFkDFj<zGFkDFj<x2
14 13 anbi2d z=x2τGFkDFj<zτGFkDFj<x2
15 14 rexralbidv z=x2jZkjτGFkDFj<zjZkjτGFkDFj<x2
16 15 rspcv x2+z+jZkjτGFkDFj<zjZkjτGFkDFj<x2
17 12 16 syl x+z+jZkjτGFkDFj<zjZkjτGFkDFj<x2
18 17 adantl φx+z+jZkjτGFkDFj<zjZkjτGFkDFj<x2
19 2 ralimi kjτkjψ
20 r19.26 kjψGFkDFj<x2kjψkjGFkDFj<x2
21 fveq2 k=mFk=Fm
22 21 4 syl k=mψθ
23 21 fvoveq1d k=mGFkDFj=GFmDFj
24 23 breq1d k=mGFkDFj<x2GFmDFj<x2
25 22 24 anbi12d k=mψGFkDFj<x2θGFmDFj<x2
26 25 cbvralvw kjψGFkDFj<x2mjθGFmDFj<x2
27 26 biimpi kjψGFkDFj<x2mjθGFmDFj<x2
28 27 a1i φx+jZkjψGFkDFj<x2mjθGFmDFj<x2
29 20 28 biimtrrid φx+jZkjψkjGFkDFj<x2mjθGFmDFj<x2
30 29 expdimp φx+jZkjψkjGFkDFj<x2mjθGFmDFj<x2
31 1 sseli jZj
32 uzid jjj
33 31 32 syl jZjj
34 fveq2 k=jFk=Fj
35 34 3 syl k=jψχ
36 35 rspcva jjkjψχ
37 33 36 sylan jZkjψχ
38 37 adantll φx+jZkjψχ
39 30 38 jctild φx+jZkjψkjGFkDFj<x2χmjθGFmDFj<x2
40 simplll φx+χθψφ
41 simplrr φx+χθψθ
42 simplrl φx+χθψχ
43 40 41 42 6 syl3anc φx+χθψGFmDFj=GFjDFm
44 43 breq1d φx+χθψGFmDFj<x2GFjDFm<x2
45 44 anbi2d φx+χθψGFkDFj<x2GFmDFj<x2GFkDFj<x2GFjDFm<x2
46 simpr φx+χθψψ
47 simpllr φx+χθψx+
48 47 rpred φx+χθψx
49 40 46 41 42 48 7 syl122anc φx+χθψGFkDFj<x2GFjDFm<x2GFkDFm<x
50 45 49 sylbid φx+χθψGFkDFj<x2GFmDFj<x2GFkDFm<x
51 50 expd φx+χθψGFkDFj<x2GFmDFj<x2GFkDFm<x
52 51 impr φx+χθψGFkDFj<x2GFmDFj<x2GFkDFm<x
53 52 an32s φx+ψGFkDFj<x2χθGFmDFj<x2GFkDFm<x
54 53 anassrs φx+ψGFkDFj<x2χθGFmDFj<x2GFkDFm<x
55 54 expimpd φx+ψGFkDFj<x2χθGFmDFj<x2GFkDFm<x
56 55 ralimdv φx+ψGFkDFj<x2χmjθGFmDFj<x2mjGFkDFm<x
57 56 impr φx+ψGFkDFj<x2χmjθGFmDFj<x2mjGFkDFm<x
58 57 an32s φx+χmjθGFmDFj<x2ψGFkDFj<x2mjGFkDFm<x
59 58 expr φx+χmjθGFmDFj<x2ψGFkDFj<x2mjGFkDFm<x
60 uzss kjkj
61 ssralv kjmjGFkDFm<xmkGFkDFm<x
62 60 61 syl kjmjGFkDFm<xmkGFkDFm<x
63 59 62 sylan9 φx+χmjθGFmDFj<x2ψkjGFkDFj<x2mkGFkDFm<x
64 63 an32s φx+χmjθGFmDFj<x2kjψGFkDFj<x2mkGFkDFm<x
65 64 expimpd φx+χmjθGFmDFj<x2kjψGFkDFj<x2mkGFkDFm<x
66 65 ralimdva φx+χmjθGFmDFj<x2kjψGFkDFj<x2kjmkGFkDFm<x
67 66 ex φx+χmjθGFmDFj<x2kjψGFkDFj<x2kjmkGFkDFm<x
68 67 com23 φx+kjψGFkDFj<x2χmjθGFmDFj<x2kjmkGFkDFm<x
69 68 adantr φx+jZkjψGFkDFj<x2χmjθGFmDFj<x2kjmkGFkDFm<x
70 20 69 biimtrrid φx+jZkjψkjGFkDFj<x2χmjθGFmDFj<x2kjmkGFkDFm<x
71 70 expdimp φx+jZkjψkjGFkDFj<x2χmjθGFmDFj<x2kjmkGFkDFm<x
72 39 71 mpdd φx+jZkjψkjGFkDFj<x2kjmkGFkDFm<x
73 19 72 sylan2 φx+jZkjτkjGFkDFj<x2kjmkGFkDFm<x
74 73 imdistanda φx+jZkjτkjGFkDFj<x2kjτkjmkGFkDFm<x
75 r19.26 kjτGFkDFj<x2kjτkjGFkDFj<x2
76 r19.26 kjτmkGFkDFm<xkjτkjmkGFkDFm<x
77 74 75 76 3imtr4g φx+jZkjτGFkDFj<x2kjτmkGFkDFm<x
78 77 reximdva φx+jZkjτGFkDFj<x2jZkjτmkGFkDFm<x
79 18 78 syld φx+z+jZkjτGFkDFj<zjZkjτmkGFkDFm<x
80 79 ralrimdva φz+jZkjτGFkDFj<zx+jZkjτmkGFkDFm<x
81 11 80 biimtrid φx+jZkjτGFkDFj<xx+jZkjτmkGFkDFm<x
82 fveq2 k=jk=j
83 34 fvoveq1d k=jGFkDFm=GFjDFm
84 83 breq1d k=jGFkDFm<xGFjDFm<x
85 82 84 raleqbidv k=jmkGFkDFm<xmjGFjDFm<x
86 85 rspcv jjkjmkGFkDFm<xmjGFjDFm<x
87 86 ad2antlr φjjkjψkjmkGFkDFm<xmjGFjDFm<x
88 fveq2 m=kFm=Fk
89 88 oveq2d m=kFjDFm=FjDFk
90 89 fveq2d m=kGFjDFm=GFjDFk
91 90 breq1d m=kGFjDFm<xGFjDFk<x
92 91 cbvralvw mjGFjDFm<xkjGFjDFk<x
93 36 anim2i φjjkjψφχ
94 93 anassrs φjjkjψφχ
95 simpr φjjkjψkjψ
96 5 breq1d φχψGFjDFk<xGFkDFj<x
97 96 3expia φχψGFjDFk<xGFkDFj<x
98 97 ralimdv φχkjψkjGFjDFk<xGFkDFj<x
99 94 95 98 sylc φjjkjψkjGFjDFk<xGFkDFj<x
100 ralbi kjGFjDFk<xGFkDFj<xkjGFjDFk<xkjGFkDFj<x
101 99 100 syl φjjkjψkjGFjDFk<xkjGFkDFj<x
102 92 101 bitrid φjjkjψmjGFjDFm<xkjGFkDFj<x
103 87 102 sylibd φjjkjψkjmkGFkDFm<xkjGFkDFj<x
104 19 103 sylan2 φjjkjτkjmkGFkDFm<xkjGFkDFj<x
105 104 imdistanda φjjkjτkjmkGFkDFm<xkjτkjGFkDFj<x
106 33 105 sylan2 φjZkjτkjmkGFkDFm<xkjτkjGFkDFj<x
107 r19.26 kjτGFkDFj<xkjτkjGFkDFj<x
108 106 76 107 3imtr4g φjZkjτmkGFkDFm<xkjτGFkDFj<x
109 108 reximdva φjZkjτmkGFkDFm<xjZkjτGFkDFj<x
110 109 ralimdv φx+jZkjτmkGFkDFm<xx+jZkjτGFkDFj<x
111 81 110 impbid φx+jZkjτGFkDFj<xx+jZkjτmkGFkDFm<x