Metamath Proof Explorer


Theorem cdleme22e

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph, 4th line on p. 115. F , N , O represent f(z), f_z(s), f_z(t) respectively. When t \/ v = p \/ q, f_z(s) <_ f_z(t) \/ v. (Contributed by NM, 6-Dec-2012)

Ref Expression
Hypotheses cdleme22.l ˙=K
cdleme22.j ˙=joinK
cdleme22.m ˙=meetK
cdleme22.a A=AtomsK
cdleme22.h H=LHypK
cdleme22e.u U=P˙Q˙W
cdleme22e.f F=z˙U˙Q˙P˙z˙W
cdleme22e.n N=P˙Q˙F˙S˙z˙W
cdleme22e.o O=P˙Q˙F˙T˙z˙W
Assertion cdleme22e KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WN˙O˙V

Proof

Step Hyp Ref Expression
1 cdleme22.l ˙=K
2 cdleme22.j ˙=joinK
3 cdleme22.m ˙=meetK
4 cdleme22.a A=AtomsK
5 cdleme22.h H=LHypK
6 cdleme22e.u U=P˙Q˙W
7 cdleme22e.f F=z˙U˙Q˙P˙z˙W
8 cdleme22e.n N=P˙Q˙F˙S˙z˙W
9 cdleme22e.o O=P˙Q˙F˙T˙z˙W
10 simp1l KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WKHL
11 10 hllatd KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WKLat
12 simp21l KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WPA
13 simp22l KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WQA
14 eqid BaseK=BaseK
15 14 2 4 hlatjcl KHLPAQAP˙QBaseK
16 10 12 13 15 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙QBaseK
17 simp1r KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WWH
18 simp33l KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WzA
19 1 2 3 4 5 6 7 14 cdleme1b KHLWHPAQAzAFBaseK
20 10 17 12 13 18 19 syl23anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WFBaseK
21 simp23l KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WSA
22 14 2 4 hlatjcl KHLSAzAS˙zBaseK
23 10 21 18 22 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WS˙zBaseK
24 14 5 lhpbase WHWBaseK
25 17 24 syl KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WWBaseK
26 14 3 latmcl KLatS˙zBaseKWBaseKS˙z˙WBaseK
27 11 23 25 26 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WS˙z˙WBaseK
28 14 2 latjcl KLatFBaseKS˙z˙WBaseKF˙S˙z˙WBaseK
29 11 20 27 28 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WF˙S˙z˙WBaseK
30 14 1 3 latmle1 KLatP˙QBaseKF˙S˙z˙WBaseKP˙Q˙F˙S˙z˙W˙P˙Q
31 11 16 29 30 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙Q˙F˙S˙z˙W˙P˙Q
32 8 31 eqbrtrid KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WN˙P˙Q
33 simp1 KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WKHLWH
34 simp21 KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WPA¬P˙W
35 simp23r KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WTA
36 simp31 KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WVAV˙W
37 simp32l KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WPQ
38 simp32r KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WT˙V=P˙Q
39 1 2 3 4 5 6 cdleme22a KHLWHPA¬P˙WQATAVAV˙WPQT˙V=P˙QV=U
40 33 34 13 35 36 37 38 39 syl133anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WV=U
41 40 oveq2d KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WO˙V=O˙U
42 9 oveq1i O˙U=P˙Q˙F˙T˙z˙W˙U
43 simp21r KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙W¬P˙W
44 1 2 3 4 5 6 cdleme0a KHLWHPA¬P˙WQAPQUA
45 10 17 12 43 13 37 44 syl222anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WUA
46 14 2 4 hlatjcl KHLTAzAT˙zBaseK
47 10 35 18 46 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WT˙zBaseK
48 14 3 latmcl KLatT˙zBaseKWBaseKT˙z˙WBaseK
49 11 47 25 48 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WT˙z˙WBaseK
50 14 2 latjcl KLatFBaseKT˙z˙WBaseKF˙T˙z˙WBaseK
51 11 20 49 50 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WF˙T˙z˙WBaseK
52 1 2 3 4 5 6 cdlemeulpq KHLWHPAQAU˙P˙Q
53 10 17 12 13 52 syl22anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WU˙P˙Q
54 14 1 2 3 4 atmod2i1 KHLUAP˙QBaseKF˙T˙z˙WBaseKU˙P˙QP˙Q˙F˙T˙z˙W˙U=P˙Q˙F˙T˙z˙W˙U
55 10 45 16 51 53 54 syl131anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙Q˙F˙T˙z˙W˙U=P˙Q˙F˙T˙z˙W˙U
56 42 55 eqtr2id KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙Q˙F˙T˙z˙W˙U=O˙U
57 41 56 eqtr4d KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WO˙V=P˙Q˙F˙T˙z˙W˙U
58 40 oveq2d KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WT˙V=T˙U
59 38 58 eqtr3d KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙Q=T˙U
60 14 2 4 hlatjcl KHLTAUAT˙UBaseK
61 10 35 45 60 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WT˙UBaseK
62 14 4 atbase zAzBaseK
63 18 62 syl KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WzBaseK
64 14 1 2 latlej1 KLatT˙UBaseKzBaseKT˙U˙T˙U˙z
65 11 61 63 64 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WT˙U˙T˙U˙z
66 2 4 hlatj32 KHLTAUAzAT˙U˙z=T˙z˙U
67 10 35 45 18 66 syl13anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WT˙U˙z=T˙z˙U
68 14 4 atbase UAUBaseK
69 45 68 syl KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WUBaseK
70 14 2 latj32 KLatzBaseKUBaseKT˙z˙WBaseKz˙U˙T˙z˙W=z˙T˙z˙W˙U
71 11 63 69 49 70 syl13anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙Wz˙U˙T˙z˙W=z˙T˙z˙W˙U
72 14 2 latj32 KLatFBaseKT˙z˙WBaseKUBaseKF˙T˙z˙W˙U=F˙U˙T˙z˙W
73 11 20 49 69 72 syl13anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WF˙T˙z˙W˙U=F˙U˙T˙z˙W
74 14 2 4 hlatjcl KHLPAzAP˙zBaseK
75 10 12 18 74 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙zBaseK
76 1 2 4 hlatlej1 KHLPAzAP˙P˙z
77 10 12 18 76 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙P˙z
78 14 1 2 3 4 atmod3i1 KHLPAP˙zBaseKWBaseKP˙P˙zP˙P˙z˙W=P˙z˙P˙W
79 10 12 75 25 77 78 syl131anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙P˙z˙W=P˙z˙P˙W
80 eqid 1.K=1.K
81 1 2 80 4 5 lhpjat2 KHLWHPA¬P˙WP˙W=1.K
82 10 17 34 81 syl21anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙W=1.K
83 82 oveq2d KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙z˙P˙W=P˙z˙1.K
84 hlol KHLKOL
85 10 84 syl KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WKOL
86 14 3 80 olm11 KOLP˙zBaseKP˙z˙1.K=P˙z
87 85 75 86 syl2anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙z˙1.K=P˙z
88 79 83 87 3eqtrd KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙P˙z˙W=P˙z
89 88 oveq1d KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙P˙z˙W˙Q=P˙z˙Q
90 6 oveq2i Q˙U=Q˙P˙Q˙W
91 1 2 4 hlatlej2 KHLPAQAQ˙P˙Q
92 10 12 13 91 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WQ˙P˙Q
93 14 1 2 3 4 atmod3i1 KHLQAP˙QBaseKWBaseKQ˙P˙QQ˙P˙Q˙W=P˙Q˙Q˙W
94 10 13 16 25 92 93 syl131anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WQ˙P˙Q˙W=P˙Q˙Q˙W
95 90 94 eqtrid KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WQ˙U=P˙Q˙Q˙W
96 simp22 KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WQA¬Q˙W
97 1 2 80 4 5 lhpjat2 KHLWHQA¬Q˙WQ˙W=1.K
98 10 17 96 97 syl21anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WQ˙W=1.K
99 98 oveq2d KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙Q˙Q˙W=P˙Q˙1.K
100 14 3 80 olm11 KOLP˙QBaseKP˙Q˙1.K=P˙Q
101 85 16 100 syl2anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙Q˙1.K=P˙Q
102 95 99 101 3eqtrd KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WQ˙U=P˙Q
103 102 oveq1d KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WQ˙U˙P˙z˙W=P˙Q˙P˙z˙W
104 14 4 atbase PAPBaseK
105 12 104 syl KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WPBaseK
106 14 3 latmcl KLatP˙zBaseKWBaseKP˙z˙WBaseK
107 11 75 25 106 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙z˙WBaseK
108 14 4 atbase QAQBaseK
109 13 108 syl KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WQBaseK
110 14 2 latj32 KLatPBaseKP˙z˙WBaseKQBaseKP˙P˙z˙W˙Q=P˙Q˙P˙z˙W
111 11 105 107 109 110 syl13anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙P˙z˙W˙Q=P˙Q˙P˙z˙W
112 103 111 eqtr4d KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WQ˙U˙P˙z˙W=P˙P˙z˙W˙Q
113 2 4 hlatj32 KHLPAQAzAP˙Q˙z=P˙z˙Q
114 10 12 13 18 113 syl13anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙Q˙z=P˙z˙Q
115 89 112 114 3eqtr4rd KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙Q˙z=Q˙U˙P˙z˙W
116 14 2 latj32 KLatQBaseKUBaseKP˙z˙WBaseKQ˙U˙P˙z˙W=Q˙P˙z˙W˙U
117 11 109 69 107 116 syl13anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WQ˙U˙P˙z˙W=Q˙P˙z˙W˙U
118 115 117 eqtrd KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙Q˙z=Q˙P˙z˙W˙U
119 118 oveq2d KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙Wz˙U˙P˙Q˙z=z˙U˙Q˙P˙z˙W˙U
120 14 2 latjcl KLatP˙QBaseKzBaseKP˙Q˙zBaseK
121 11 16 63 120 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙Q˙zBaseK
122 14 1 2 latlej2 KLatP˙QBaseKzBaseKz˙P˙Q˙z
123 11 16 63 122 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙Wz˙P˙Q˙z
124 14 1 2 3 4 atmod1i1 KHLzAUBaseKP˙Q˙zBaseKz˙P˙Q˙zz˙U˙P˙Q˙z=z˙U˙P˙Q˙z
125 10 18 69 121 123 124 syl131anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙Wz˙U˙P˙Q˙z=z˙U˙P˙Q˙z
126 7 oveq1i F˙U=z˙U˙Q˙P˙z˙W˙U
127 14 2 4 hlatjcl KHLzAUAz˙UBaseK
128 10 18 45 127 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙Wz˙UBaseK
129 14 2 latjcl KLatQBaseKP˙z˙WBaseKQ˙P˙z˙WBaseK
130 11 109 107 129 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WQ˙P˙z˙WBaseK
131 1 2 4 hlatlej2 KHLzAUAU˙z˙U
132 10 18 45 131 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WU˙z˙U
133 14 1 2 3 4 atmod2i1 KHLUAz˙UBaseKQ˙P˙z˙WBaseKU˙z˙Uz˙U˙Q˙P˙z˙W˙U=z˙U˙Q˙P˙z˙W˙U
134 10 45 128 130 132 133 syl131anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙Wz˙U˙Q˙P˙z˙W˙U=z˙U˙Q˙P˙z˙W˙U
135 126 134 eqtrid KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WF˙U=z˙U˙Q˙P˙z˙W˙U
136 119 125 135 3eqtr4rd KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WF˙U=z˙U˙P˙Q˙z
137 14 1 2 latlej1 KLatP˙QBaseKzBaseKP˙Q˙P˙Q˙z
138 11 16 63 137 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙Q˙P˙Q˙z
139 14 1 11 69 16 121 53 138 lattrd KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WU˙P˙Q˙z
140 14 1 3 latleeqm1 KLatUBaseKP˙Q˙zBaseKU˙P˙Q˙zU˙P˙Q˙z=U
141 11 69 121 140 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WU˙P˙Q˙zU˙P˙Q˙z=U
142 139 141 mpbid KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WU˙P˙Q˙z=U
143 142 oveq2d KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙Wz˙U˙P˙Q˙z=z˙U
144 136 143 eqtrd KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WF˙U=z˙U
145 144 oveq1d KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WF˙U˙T˙z˙W=z˙U˙T˙z˙W
146 73 145 eqtrd KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WF˙T˙z˙W˙U=z˙U˙T˙z˙W
147 1 2 4 hlatlej2 KHLTAzAz˙T˙z
148 10 35 18 147 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙Wz˙T˙z
149 14 1 2 3 4 atmod3i1 KHLzAT˙zBaseKWBaseKz˙T˙zz˙T˙z˙W=T˙z˙z˙W
150 10 18 47 25 148 149 syl131anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙Wz˙T˙z˙W=T˙z˙z˙W
151 simp33 KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WzA¬z˙W
152 1 2 80 4 5 lhpjat2 KHLWHzA¬z˙Wz˙W=1.K
153 10 17 151 152 syl21anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙Wz˙W=1.K
154 153 oveq2d KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WT˙z˙z˙W=T˙z˙1.K
155 150 154 eqtrd KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙Wz˙T˙z˙W=T˙z˙1.K
156 14 3 80 olm11 KOLT˙zBaseKT˙z˙1.K=T˙z
157 85 47 156 syl2anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WT˙z˙1.K=T˙z
158 155 157 eqtr2d KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WT˙z=z˙T˙z˙W
159 158 oveq1d KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WT˙z˙U=z˙T˙z˙W˙U
160 71 146 159 3eqtr4rd KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WT˙z˙U=F˙T˙z˙W˙U
161 67 160 eqtrd KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WT˙U˙z=F˙T˙z˙W˙U
162 65 161 breqtrd KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WT˙U˙F˙T˙z˙W˙U
163 59 162 eqbrtrd KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙Q˙F˙T˙z˙W˙U
164 14 2 latjcl KLatF˙T˙z˙WBaseKUBaseKF˙T˙z˙W˙UBaseK
165 11 51 69 164 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WF˙T˙z˙W˙UBaseK
166 14 1 3 latleeqm1 KLatP˙QBaseKF˙T˙z˙W˙UBaseKP˙Q˙F˙T˙z˙W˙UP˙Q˙F˙T˙z˙W˙U=P˙Q
167 11 16 165 166 syl3anc KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙Q˙F˙T˙z˙W˙UP˙Q˙F˙T˙z˙W˙U=P˙Q
168 163 167 mpbid KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙Q˙F˙T˙z˙W˙U=P˙Q
169 57 168 eqtr2d KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WP˙Q=O˙V
170 32 169 breqtrd KHLWHPA¬P˙WQA¬Q˙WSATAVAV˙WPQT˙V=P˙QzA¬z˙WN˙O˙V