Metamath Proof Explorer


Theorem cdlemh

Description: Lemma H of Crawley p. 118. (Contributed by NM, 17-Jun-2013)

Ref Expression
Hypotheses cdlemh.b B=BaseK
cdlemh.l ˙=K
cdlemh.j ˙=joinK
cdlemh.m ˙=meetK
cdlemh.a A=AtomsK
cdlemh.h H=LHypK
cdlemh.t T=LTrnKW
cdlemh.r R=trLKW
cdlemh.s S=P˙RG˙Q˙RGF-1
Assertion cdlemh KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGSA¬S˙W

Proof

Step Hyp Ref Expression
1 cdlemh.b B=BaseK
2 cdlemh.l ˙=K
3 cdlemh.j ˙=joinK
4 cdlemh.m ˙=meetK
5 cdlemh.a A=AtomsK
6 cdlemh.h H=LHypK
7 cdlemh.t T=LTrnKW
8 cdlemh.r R=trLKW
9 cdlemh.s S=P˙RG˙Q˙RGF-1
10 simp1 KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGKHLWHFTGT
11 simp21l KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGPA
12 simp22l KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGQA
13 simp23 KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGQ˙P˙RF
14 simp33 KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGRFRG
15 1 2 3 4 5 6 7 8 9 cdlemh1 KHLWHFTGTPAQAQ˙P˙RFRFRGS˙RGF-1=Q˙RGF-1
16 10 11 12 13 14 15 syl122anc KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGS˙RGF-1=Q˙RGF-1
17 oveq1 S=0.KS˙RGF-1=0.K˙RGF-1
18 simp11l KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGKHL
19 hlol KHLKOL
20 18 19 syl KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGKOL
21 simp11r KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGWH
22 18 21 jca KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGKHLWH
23 simp13 KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGGT
24 simp12 KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGFT
25 6 7 ltrncnv KHLWHFTF-1T
26 22 24 25 syl2anc KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGF-1T
27 23 26 jca KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGGTF-1T
28 14 necomd KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGRGRF
29 6 7 8 trlcnv KHLWHFTRF-1=RF
30 22 24 29 syl2anc KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGRF-1=RF
31 28 30 neeqtrrd KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGRGRF-1
32 5 6 7 8 trlcoat KHLWHGTF-1TRGRF-1RGF-1A
33 22 27 31 32 syl3anc KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGRGF-1A
34 1 5 atbase RGF-1ARGF-1B
35 33 34 syl KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGRGF-1B
36 eqid 0.K=0.K
37 1 3 36 olj02 KOLRGF-1B0.K˙RGF-1=RGF-1
38 20 35 37 syl2anc KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRG0.K˙RGF-1=RGF-1
39 17 38 sylan9eqr KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGS=0.KS˙RGF-1=RGF-1
40 6 7 ltrnco KHLWHGTF-1TGF-1T
41 22 23 26 40 syl3anc KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGGF-1T
42 2 6 7 8 trlle KHLWHGF-1TRGF-1˙W
43 22 41 42 syl2anc KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGRGF-1˙W
44 simp22r KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRG¬Q˙W
45 nbrne2 RGF-1˙W¬Q˙WRGF-1Q
46 45 necomd RGF-1˙W¬Q˙WQRGF-1
47 43 44 46 syl2anc KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGQRGF-1
48 eqid LLinesK=LLinesK
49 3 5 48 llni2 KHLQARGF-1AQRGF-1Q˙RGF-1LLinesK
50 18 12 33 47 49 syl31anc KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGQ˙RGF-1LLinesK
51 5 48 llnneat KHLQ˙RGF-1LLinesK¬Q˙RGF-1A
52 18 50 51 syl2anc KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRG¬Q˙RGF-1A
53 nelne2 RGF-1A¬Q˙RGF-1ARGF-1Q˙RGF-1
54 33 52 53 syl2anc KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGRGF-1Q˙RGF-1
55 54 adantr KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGS=0.KRGF-1Q˙RGF-1
56 39 55 eqnetrd KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGS=0.KS˙RGF-1Q˙RGF-1
57 56 ex KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGS=0.KS˙RGF-1Q˙RGF-1
58 57 necon2d KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGS˙RGF-1=Q˙RGF-1S0.K
59 16 58 mpd KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGS0.K
60 simp32 KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGGIB
61 1 5 6 7 8 trlnidat KHLWHGTGIBRGA
62 22 23 60 61 syl3anc KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGRGA
63 2 3 5 hlatlej2 KHLPARGARG˙P˙RG
64 18 11 62 63 syl3anc KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGRG˙P˙RG
65 simp22 KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGQA¬Q˙W
66 simp31 KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGFIB
67 1 6 7 ltrncnvnid KHLWHFTFIBF-1IB
68 22 24 66 67 syl3anc KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGF-1IB
69 1 6 7 8 trlcone KHLWHGTF-1TRGRF-1F-1IBRGRGF-1
70 69 necomd KHLWHGTF-1TRGRF-1F-1IBRGF-1RG
71 22 23 26 31 68 70 syl122anc KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGRGF-1RG
72 2 6 7 8 trlle KHLWHGTRG˙W
73 22 23 72 syl2anc KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGRG˙W
74 2 3 5 6 lhp2atnle KHLWHQA¬Q˙WRGF-1RGRGF-1ARGF-1˙WRGARG˙W¬RG˙Q˙RGF-1
75 22 65 71 33 43 62 73 74 syl322anc KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRG¬RG˙Q˙RGF-1
76 nbrne1 RG˙P˙RG¬RG˙Q˙RGF-1P˙RGQ˙RGF-1
77 64 75 76 syl2anc KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGP˙RGQ˙RGF-1
78 3 4 36 5 2atmat0 KHLPARGAQARGF-1AP˙RGQ˙RGF-1P˙RG˙Q˙RGF-1AP˙RG˙Q˙RGF-1=0.K
79 18 11 62 12 33 77 78 syl33anc KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGP˙RG˙Q˙RGF-1AP˙RG˙Q˙RGF-1=0.K
80 9 eleq1i SAP˙RG˙Q˙RGF-1A
81 9 eqeq1i S=0.KP˙RG˙Q˙RGF-1=0.K
82 80 81 orbi12i SAS=0.KP˙RG˙Q˙RGF-1AP˙RG˙Q˙RGF-1=0.K
83 79 82 sylibr KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGSAS=0.K
84 83 ord KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRG¬SAS=0.K
85 84 necon1ad KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGS0.KSA
86 59 85 mpd KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGSA
87 simp21 KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGPA¬P˙W
88 87 65 jca KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGPA¬P˙WQA¬Q˙W
89 1 2 3 4 5 6 7 8 9 36 cdlemh2 KHLWHFTGTPA¬P˙WQA¬Q˙WFIBGIBRFRGS˙W=0.K
90 88 89 syld3an2 KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGS˙W=0.K
91 2 4 36 5 6 lhpmatb KHLWHSA¬S˙WS˙W=0.K
92 18 21 86 91 syl21anc KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRG¬S˙WS˙W=0.K
93 90 92 mpbird KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRG¬S˙W
94 86 93 jca KHLWHFTGTPA¬P˙WQA¬Q˙WQ˙P˙RFFIBGIBRFRGSA¬S˙W