Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk.b |
|
2 |
|
cdlemk.l |
|
3 |
|
cdlemk.j |
|
4 |
|
cdlemk.a |
|
5 |
|
cdlemk.h |
|
6 |
|
cdlemk.t |
|
7 |
|
cdlemk.r |
|
8 |
|
cdlemk.m |
|
9 |
|
simp1l |
|
10 |
|
simp1 |
|
11 |
|
simp2l |
|
12 |
|
simp32l |
|
13 |
1 4 5 6 7
|
trlnidat |
|
14 |
10 11 12 13
|
syl3anc |
|
15 |
|
simp2r |
|
16 |
|
simp31 |
|
17 |
4 5 6 7
|
trlcocnvat |
|
18 |
10 15 11 16 17
|
syl121anc |
|
19 |
|
simp33l |
|
20 |
2 4 5 6
|
ltrnat |
|
21 |
10 11 19 20
|
syl3anc |
|
22 |
5 6
|
ltrncnv |
|
23 |
10 11 22
|
syl2anc |
|
24 |
5 6 7
|
trlcnv |
|
25 |
10 11 24
|
syl2anc |
|
26 |
16
|
necomd |
|
27 |
25 26
|
eqnetrd |
|
28 |
|
simp32r |
|
29 |
1 5 6 7
|
trlcone |
|
30 |
10 23 15 27 28 29
|
syl122anc |
|
31 |
5 6
|
ltrncom |
|
32 |
10 23 15 31
|
syl3anc |
|
33 |
32
|
fveq2d |
|
34 |
30 25 33
|
3netr3d |
|
35 |
|
simp33 |
|
36 |
2 4 5 6
|
ltrnel |
|
37 |
36
|
simprd |
|
38 |
10 11 35 37
|
syl3anc |
|
39 |
2 5 6 7
|
trlle |
|
40 |
10 11 39
|
syl2anc |
|
41 |
5 6
|
ltrnco |
|
42 |
10 15 23 41
|
syl3anc |
|
43 |
2 5 6 7
|
trlle |
|
44 |
10 42 43
|
syl2anc |
|
45 |
9
|
hllatd |
|
46 |
1 4
|
atbase |
|
47 |
14 46
|
syl |
|
48 |
1 4
|
atbase |
|
49 |
18 48
|
syl |
|
50 |
|
simp1r |
|
51 |
1 5
|
lhpbase |
|
52 |
50 51
|
syl |
|
53 |
1 2 3
|
latjle12 |
|
54 |
45 47 49 52 53
|
syl13anc |
|
55 |
40 44 54
|
mpbi2and |
|
56 |
1 4
|
atbase |
|
57 |
21 56
|
syl |
|
58 |
1 3 4
|
hlatjcl |
|
59 |
9 14 18 58
|
syl3anc |
|
60 |
1 2
|
lattr |
|
61 |
45 57 59 52 60
|
syl13anc |
|
62 |
55 61
|
mpan2d |
|
63 |
38 62
|
mtod |
|
64 |
2 3 8 4
|
2llnma2 |
|
65 |
9 14 18 21 34 63 64
|
syl132anc |
|