Metamath Proof Explorer


Theorem cdlemkid1

Description: Lemma for cdlemkid . (Contributed by NM, 24-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
Assertion cdlemkid1 KHLWHFTNTRF=RNPA¬P˙WbTbIBZ˙Rb=P˙Rb

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 9 oveq1i Z˙Rb=P˙Rb˙NP˙RbF-1˙Rb
11 simp1l KHLWHFTNTRF=RNPA¬P˙WbTbIBKHL
12 simp1 KHLWHFTNTRF=RNPA¬P˙WbTbIBKHLWH
13 simp3rl KHLWHFTNTRF=RNPA¬P˙WbTbIBbT
14 simp3rr KHLWHFTNTRF=RNPA¬P˙WbTbIBbIB
15 1 5 6 7 8 trlnidat KHLWHbTbIBRbA
16 12 13 14 15 syl3anc KHLWHFTNTRF=RNPA¬P˙WbTbIBRbA
17 simp3ll KHLWHFTNTRF=RNPA¬P˙WbTbIBPA
18 1 3 5 hlatjcl KHLPARbAP˙RbB
19 11 17 16 18 syl3anc KHLWHFTNTRF=RNPA¬P˙WbTbIBP˙RbB
20 11 hllatd KHLWHFTNTRF=RNPA¬P˙WbTbIBKLat
21 simp22 KHLWHFTNTRF=RNPA¬P˙WbTbIBNT
22 1 5 atbase PAPB
23 17 22 syl KHLWHFTNTRF=RNPA¬P˙WbTbIBPB
24 1 6 7 ltrncl KHLWHNTPBNPB
25 12 21 23 24 syl3anc KHLWHFTNTRF=RNPA¬P˙WbTbIBNPB
26 simp21 KHLWHFTNTRF=RNPA¬P˙WbTbIBFT
27 6 7 ltrncnv KHLWHFTF-1T
28 12 26 27 syl2anc KHLWHFTNTRF=RNPA¬P˙WbTbIBF-1T
29 6 7 ltrnco KHLWHbTF-1TbF-1T
30 12 13 28 29 syl3anc KHLWHFTNTRF=RNPA¬P˙WbTbIBbF-1T
31 1 6 7 8 trlcl KHLWHbF-1TRbF-1B
32 12 30 31 syl2anc KHLWHFTNTRF=RNPA¬P˙WbTbIBRbF-1B
33 1 3 latjcl KLatNPBRbF-1BNP˙RbF-1B
34 20 25 32 33 syl3anc KHLWHFTNTRF=RNPA¬P˙WbTbIBNP˙RbF-1B
35 2 3 5 hlatlej2 KHLPARbARb˙P˙Rb
36 11 17 16 35 syl3anc KHLWHFTNTRF=RNPA¬P˙WbTbIBRb˙P˙Rb
37 1 2 3 4 5 atmod2i1 KHLRbAP˙RbBNP˙RbF-1BRb˙P˙RbP˙Rb˙NP˙RbF-1˙Rb=P˙Rb˙NP˙RbF-1˙Rb
38 11 16 19 34 36 37 syl131anc KHLWHFTNTRF=RNPA¬P˙WbTbIBP˙Rb˙NP˙RbF-1˙Rb=P˙Rb˙NP˙RbF-1˙Rb
39 1 5 atbase RbARbB
40 16 39 syl KHLWHFTNTRF=RNPA¬P˙WbTbIBRbB
41 1 6 7 8 trlcl KHLWHNTRNB
42 12 21 41 syl2anc KHLWHFTNTRF=RNPA¬P˙WbTbIBRNB
43 1 3 latj32 KLatPBRbBRNBP˙Rb˙RN=P˙RN˙Rb
44 20 23 40 42 43 syl13anc KHLWHFTNTRF=RNPA¬P˙WbTbIBP˙Rb˙RN=P˙RN˙Rb
45 simp3l KHLWHFTNTRF=RNPA¬P˙WbTbIBPA¬P˙W
46 2 3 5 6 7 8 trljat3 KHLWHNTPA¬P˙WP˙RN=NP˙RN
47 12 21 45 46 syl3anc KHLWHFTNTRF=RNPA¬P˙WbTbIBP˙RN=NP˙RN
48 47 oveq1d KHLWHFTNTRF=RNPA¬P˙WbTbIBP˙RN˙Rb=NP˙RN˙Rb
49 1 3 latjass KLatNPBRNBRbBNP˙RN˙Rb=NP˙RN˙Rb
50 20 25 42 40 49 syl13anc KHLWHFTNTRF=RNPA¬P˙WbTbIBNP˙RN˙Rb=NP˙RN˙Rb
51 44 48 50 3eqtrd KHLWHFTNTRF=RNPA¬P˙WbTbIBP˙Rb˙RN=NP˙RN˙Rb
52 1 3 latjass KLatNPBRbF-1BRbBNP˙RbF-1˙Rb=NP˙RbF-1˙Rb
53 20 25 32 40 52 syl13anc KHLWHFTNTRF=RNPA¬P˙WbTbIBNP˙RbF-1˙Rb=NP˙RbF-1˙Rb
54 1 3 latjcom KLatRNBRbBRN˙Rb=Rb˙RN
55 20 42 40 54 syl3anc KHLWHFTNTRF=RNPA¬P˙WbTbIBRN˙Rb=Rb˙RN
56 6 7 8 trlcnv KHLWHFTRF-1=RF
57 12 26 56 syl2anc KHLWHFTNTRF=RNPA¬P˙WbTbIBRF-1=RF
58 simp23 KHLWHFTNTRF=RNPA¬P˙WbTbIBRF=RN
59 57 58 eqtrd KHLWHFTNTRF=RNPA¬P˙WbTbIBRF-1=RN
60 59 oveq2d KHLWHFTNTRF=RNPA¬P˙WbTbIBRb˙RF-1=Rb˙RN
61 55 60 eqtr4d KHLWHFTNTRF=RNPA¬P˙WbTbIBRN˙Rb=Rb˙RF-1
62 3 6 7 8 trljco KHLWHbTF-1TRb˙RbF-1=Rb˙RF-1
63 12 13 28 62 syl3anc KHLWHFTNTRF=RNPA¬P˙WbTbIBRb˙RbF-1=Rb˙RF-1
64 1 3 latjcom KLatRbBRbF-1BRb˙RbF-1=RbF-1˙Rb
65 20 40 32 64 syl3anc KHLWHFTNTRF=RNPA¬P˙WbTbIBRb˙RbF-1=RbF-1˙Rb
66 61 63 65 3eqtr2d KHLWHFTNTRF=RNPA¬P˙WbTbIBRN˙Rb=RbF-1˙Rb
67 66 oveq2d KHLWHFTNTRF=RNPA¬P˙WbTbIBNP˙RN˙Rb=NP˙RbF-1˙Rb
68 53 67 eqtr4d KHLWHFTNTRF=RNPA¬P˙WbTbIBNP˙RbF-1˙Rb=NP˙RN˙Rb
69 51 68 eqtr4d KHLWHFTNTRF=RNPA¬P˙WbTbIBP˙Rb˙RN=NP˙RbF-1˙Rb
70 69 oveq2d KHLWHFTNTRF=RNPA¬P˙WbTbIBP˙Rb˙P˙Rb˙RN=P˙Rb˙NP˙RbF-1˙Rb
71 1 3 4 latabs2 KLatP˙RbBRNBP˙Rb˙P˙Rb˙RN=P˙Rb
72 20 19 42 71 syl3anc KHLWHFTNTRF=RNPA¬P˙WbTbIBP˙Rb˙P˙Rb˙RN=P˙Rb
73 38 70 72 3eqtr2d KHLWHFTNTRF=RNPA¬P˙WbTbIBP˙Rb˙NP˙RbF-1˙Rb=P˙Rb
74 10 73 eqtrid KHLWHFTNTRF=RNPA¬P˙WbTbIBZ˙Rb=P˙Rb