Metamath Proof Explorer


Theorem chordthmlem4

Description: If P is on the segment AB and M is the midpoint of AB, then PA x. PB = BM2 - PM2. If all lengths are reexpressed as fractions of AB, this reduces to the identity X x. ( 1 - X ) = ( 1 / 2 )2 - ( ( 1 / 2 ) - X )2. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses chordthmlem4.A φA
chordthmlem4.B φB
chordthmlem4.X φX01
chordthmlem4.M φM=A+B2
chordthmlem4.P φP=XA+1XB
Assertion chordthmlem4 φPAPB=BM2PM2

Proof

Step Hyp Ref Expression
1 chordthmlem4.A φA
2 chordthmlem4.B φB
3 chordthmlem4.X φX01
4 chordthmlem4.M φM=A+B2
5 chordthmlem4.P φP=XA+1XB
6 1red φ1
7 unitssre 01
8 7 3 sselid φX
9 6 8 resubcld φ1X
10 9 recnd φ1X
11 10 abscld φ1X
12 11 recnd φ1X
13 2 1 subcld φBA
14 13 abscld φBA
15 14 recnd φBA
16 8 recnd φX
17 16 abscld φX
18 17 recnd φX
19 12 15 18 15 mul4d φ1XBAXBA=1XXBABA
20 16 1 mulcld φXA
21 10 2 mulcld φ1XB
22 20 21 addcld φXA+1XB
23 5 22 eqeltrd φP
24 1 23 2 16 affineequiv2 φP=XA+1XBPA=1XBA
25 5 24 mpbid φPA=1XBA
26 25 fveq2d φPA=1XBA
27 10 13 absmuld φ1XBA=1XBA
28 26 27 eqtrd φPA=1XBA
29 23 2 abssubd φPB=BP
30 1 23 2 16 affineequiv φP=XA+1XBBP=XBA
31 5 30 mpbid φBP=XBA
32 31 fveq2d φBP=XBA
33 16 13 absmuld φXBA=XBA
34 29 32 33 3eqtrd φPB=XBA
35 28 34 oveq12d φPAPB=1XBAXBA
36 15 sqvald φBA2=BABA
37 36 oveq2d φ1XXBA2=1XXBABA
38 19 35 37 3eqtr4d φPAPB=1XXBA2
39 6 recnd φ1
40 39 halfcld φ12
41 40 sqcld φ122
42 6 rehalfcld φ12
43 42 8 resubcld φ12X
44 43 recnd φ12X
45 44 abscld φ12X
46 45 recnd φ12X
47 46 sqcld φ12X2
48 15 sqcld φBA2
49 41 47 48 subdird φ12212X2BA2=122BA212X2BA2
50 subsq 1212X12212X2=12+12-X1212X
51 40 44 50 syl2anc φ12212X2=12+12-X1212X
52 40 40 16 addsubassd φ12+12-X=12+12-X
53 39 2halvesd φ12+12=1
54 53 oveq1d φ12+12-X=1X
55 52 54 eqtr3d φ12+12-X=1X
56 40 16 nncand φ1212X=X
57 55 56 oveq12d φ12+12-X1212X=1XX
58 51 57 eqtr2d φ1XX=12212X2
59 elicc01 X01X0XX1
60 3 59 sylib φX0XX1
61 60 simp3d φX1
62 8 6 61 abssubge0d φ1X=1X
63 60 simp2d φ0X
64 8 63 absidd φX=X
65 62 64 oveq12d φ1XX=1XX
66 absresq 12X12X2=12X2
67 43 66 syl φ12X2=12X2
68 67 oveq2d φ12212X2=12212X2
69 58 65 68 3eqtr4d φ1XX=12212X2
70 69 oveq1d φ1XXBA2=12212X2BA2
71 2cnd φ2
72 2ne0 20
73 72 a1i φ20
74 2 71 73 divcan4d φB22=B
75 2 times2d φB2=B+B
76 75 oveq1d φB22=B+B2
77 74 76 eqtr3d φB=B+B2
78 77 4 oveq12d φBM=B+B2A+B2
79 2 2 addcld φB+B
80 1 2 addcld φA+B
81 79 80 71 73 divsubdird φB+B-A+B2=B+B2A+B2
82 2 1 2 pnpcan2d φB+B-A+B=BA
83 82 oveq1d φB+B-A+B2=BA2
84 78 81 83 3eqtr2d φBM=BA2
85 13 71 73 divrec2d φBA2=12BA
86 84 85 eqtrd φBM=12BA
87 86 fveq2d φBM=12BA
88 40 13 absmuld φ12BA=12BA
89 0red φ0
90 halfgt0 0<12
91 90 a1i φ0<12
92 89 42 91 ltled φ012
93 42 92 absidd φ12=12
94 93 oveq1d φ12BA=12BA
95 87 88 94 3eqtrd φBM=12BA
96 95 oveq1d φBM2=12BA2
97 40 15 sqmuld φ12BA2=122BA2
98 96 97 eqtrd φBM2=122BA2
99 40 16 13 subdird φ12XBA=12BAXBA
100 86 31 oveq12d φB-M-BP=12BAXBA
101 80 halfcld φA+B2
102 4 101 eqeltrd φM
103 2 102 23 nnncan1d φB-M-BP=PM
104 99 100 103 3eqtr2rd φPM=12XBA
105 104 fveq2d φPM=12XBA
106 44 13 absmuld φ12XBA=12XBA
107 105 106 eqtrd φPM=12XBA
108 107 oveq1d φPM2=12XBA2
109 46 15 sqmuld φ12XBA2=12X2BA2
110 108 109 eqtrd φPM2=12X2BA2
111 98 110 oveq12d φBM2PM2=122BA212X2BA2
112 49 70 111 3eqtr4rd φBM2PM2=1XXBA2
113 38 112 eqtr4d φPAPB=BM2PM2