Metamath Proof Explorer


Theorem clcnvlem

Description: When A , an upper bound of the closure, exists and certain substitutions hold the converse of the closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020)

Ref Expression
Hypotheses clcnvlem.sub1 φx=y-1XX-1-1χψ
clcnvlem.sub2 φy=x-1ψχ
clcnvlem.sub3 x=Aψθ
clcnvlem.ssub φXA
clcnvlem.ubex φAV
clcnvlem.clex φθ
Assertion clcnvlem φx|Xxψ-1=y|X-1yχ

Proof

Step Hyp Ref Expression
1 clcnvlem.sub1 φx=y-1XX-1-1χψ
2 clcnvlem.sub2 φy=x-1ψχ
3 clcnvlem.sub3 x=Aψθ
4 clcnvlem.ssub φXA
5 clcnvlem.ubex φAV
6 clcnvlem.clex φθ
7 4 6 jca φXAθ
8 3 cleq2lem x=AXxψXAθ
9 5 7 8 spcedv φxXxψ
10 9 cnvintabd φx|Xxψ-1=z𝒫V×V|xz=x-1Xxψ
11 df-rab z𝒫V×V|xz=x-1Xxψ=z|z𝒫V×Vxz=x-1Xxψ
12 exsimpl xz=x-1Xxψxz=x-1
13 relcnv Relx-1
14 releq z=x-1RelzRelx-1
15 13 14 mpbiri z=x-1Relz
16 15 exlimiv xz=x-1Relz
17 12 16 syl xz=x-1XxψRelz
18 df-rel RelzzV×V
19 17 18 sylib xz=x-1XxψzV×V
20 velpw z𝒫V×VzV×V
21 20 bicomi zV×Vz𝒫V×V
22 19 21 sylib xz=x-1Xxψz𝒫V×V
23 22 pm4.71ri xz=x-1Xxψz𝒫V×Vxz=x-1Xxψ
24 23 bicomi z𝒫V×Vxz=x-1Xxψxz=x-1Xxψ
25 24 abbii z|z𝒫V×Vxz=x-1Xxψ=z|xz=x-1Xxψ
26 11 25 eqtri z𝒫V×V|xz=x-1Xxψ=z|xz=x-1Xxψ
27 26 inteqi z𝒫V×V|xz=x-1Xxψ=z|xz=x-1Xxψ
28 27 a1i φz𝒫V×V|xz=x-1Xxψ=z|xz=x-1Xxψ
29 vex yV
30 29 cnvex y-1V
31 30 cnvex y-1-1V
32 31 a1i φy-1-1V
33 5 4 ssexd φXV
34 33 difexd φXX-1-1V
35 unexg y-1VXX-1-1Vy-1XX-1-1V
36 30 34 35 sylancr φy-1XX-1-1V
37 inundif XX-1-1XX-1-1=X
38 cnvun XX-1-1XX-1-1-1=XX-1-1-1XX-1-1-1
39 38 sseq1i XX-1-1XX-1-1-1yXX-1-1-1XX-1-1-1y
40 39 biimpi XX-1-1XX-1-1-1yXX-1-1-1XX-1-1-1y
41 40 unssad XX-1-1XX-1-1-1yXX-1-1-1y
42 relcnv RelX-1-1
43 relin2 RelX-1-1RelXX-1-1
44 42 43 ax-mp RelXX-1-1
45 dfrel2 RelXX-1-1XX-1-1-1-1=XX-1-1
46 44 45 mpbi XX-1-1-1-1=XX-1-1
47 cnvss XX-1-1-1yXX-1-1-1-1y-1
48 46 47 eqsstrrid XX-1-1-1yXX-1-1y-1
49 41 48 syl XX-1-1XX-1-1-1yXX-1-1y-1
50 ssid XX-1-1XX-1-1
51 unss12 XX-1-1y-1XX-1-1XX-1-1XX-1-1XX-1-1y-1XX-1-1
52 49 50 51 sylancl XX-1-1XX-1-1-1yXX-1-1XX-1-1y-1XX-1-1
53 52 a1i XX-1-1XX-1-1=XXX-1-1XX-1-1-1yXX-1-1XX-1-1y-1XX-1-1
54 cnveq XX-1-1XX-1-1=XXX-1-1XX-1-1-1=X-1
55 54 sseq1d XX-1-1XX-1-1=XXX-1-1XX-1-1-1yX-1y
56 sseq1 XX-1-1XX-1-1=XXX-1-1XX-1-1y-1XX-1-1Xy-1XX-1-1
57 53 55 56 3imtr3d XX-1-1XX-1-1=XX-1yXy-1XX-1-1
58 37 57 ax-mp X-1yXy-1XX-1-1
59 sseq2 x=y-1XX-1-1XxXy-1XX-1-1
60 58 59 imbitrrid x=y-1XX-1-1X-1yXx
61 60 adantl φx=y-1XX-1-1X-1yXx
62 61 1 anim12d φx=y-1XX-1-1X-1yχXxψ
63 cnvun y-1XX-1-1-1=y-1-1XX-1-1-1
64 cnvnonrel XX-1-1-1=
65 0ss y-1-1
66 64 65 eqsstri XX-1-1-1y-1-1
67 ssequn2 XX-1-1-1y-1-1y-1-1XX-1-1-1=y-1-1
68 66 67 mpbi y-1-1XX-1-1-1=y-1-1
69 63 68 eqtr2i y-1-1=y-1XX-1-1-1
70 cnveq x=y-1XX-1-1x-1=y-1XX-1-1-1
71 69 70 eqtr4id x=y-1XX-1-1y-1-1=x-1
72 71 adantl φx=y-1XX-1-1y-1-1=x-1
73 62 72 jctild φx=y-1XX-1-1X-1yχy-1-1=x-1Xxψ
74 36 73 spcimedv φX-1yχxy-1-1=x-1Xxψ
75 74 imp φX-1yχxy-1-1=x-1Xxψ
76 75 adantlr φz=y-1-1X-1yχxy-1-1=x-1Xxψ
77 eqeq1 z=y-1-1z=x-1y-1-1=x-1
78 77 anbi1d z=y-1-1z=x-1Xxψy-1-1=x-1Xxψ
79 78 exbidv z=y-1-1xz=x-1Xxψxy-1-1=x-1Xxψ
80 79 ad2antlr φz=y-1-1X-1yχxz=x-1Xxψxy-1-1=x-1Xxψ
81 76 80 mpbird φz=y-1-1X-1yχxz=x-1Xxψ
82 81 ex φz=y-1-1X-1yχxz=x-1Xxψ
83 cnvcnvss y-1-1y
84 83 a1i φy-1-1y
85 32 82 84 intabssd φz|xz=x-1Xxψy|X-1yχ
86 vex zV
87 86 a1i φzV
88 eqtr y=zz=x-1y=x-1
89 cnvss XxX-1x-1
90 sseq2 y=x-1X-1yX-1x-1
91 89 90 imbitrrid y=x-1XxX-1y
92 91 adantl φy=x-1XxX-1y
93 92 2 anim12d φy=x-1XxψX-1yχ
94 93 ex φy=x-1XxψX-1yχ
95 88 94 syl5 φy=zz=x-1XxψX-1yχ
96 95 impl φy=zz=x-1XxψX-1yχ
97 96 expimpd φy=zz=x-1XxψX-1yχ
98 97 exlimdv φy=zxz=x-1XxψX-1yχ
99 ssid zz
100 99 a1i φzz
101 87 98 100 intabssd φy|X-1yχz|xz=x-1Xxψ
102 85 101 eqssd φz|xz=x-1Xxψ=y|X-1yχ
103 10 28 102 3eqtrd φx|Xxψ-1=y|X-1yχ