Metamath Proof Explorer


Theorem cldllycmp

Description: A closed subspace of a locally compact space is also locally compact. (The analogous result for open subspaces follows from the more general nllyrest .) (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion cldllycmp JN-Locally Comp AClsdJ J𝑡AN-Locally Comp

Proof

Step Hyp Ref Expression
1 nllytop JN-Locally Comp JTop
2 resttop JTopAClsdJJ𝑡ATop
3 1 2 sylan JN-Locally Comp AClsdJ J𝑡ATop
4 elrest JN-Locally Comp AClsdJ xJ𝑡AuJx=uA
5 simpll JN-Locally Comp AClsdJ uJyuA JN-Locally Comp
6 simprl JN-Locally Comp AClsdJ uJyuA uJ
7 simprr JN-Locally Comp AClsdJ uJyuA yuA
8 7 elin1d JN-Locally Comp AClsdJ uJyuA yu
9 nlly2i JN-Locally Comp uJ yu s𝒫uwJywwsJ𝑡sComp
10 5 6 8 9 syl3anc JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp
11 3 ad2antrr JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp J𝑡ATop
12 1 ad3antrrr JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp JTop
13 simpllr JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp AClsdJ
14 simprlr JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp wJ
15 elrestr JTopAClsdJwJwAJ𝑡A
16 12 13 14 15 syl3anc JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp wAJ𝑡A
17 simprr1 JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp yw
18 simplrr JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp yuA
19 18 elin2d JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp yA
20 17 19 elind JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp ywA
21 opnneip J𝑡ATopwAJ𝑡AywAwAneiJ𝑡Ay
22 11 16 20 21 syl3anc JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp wAneiJ𝑡Ay
23 simprr2 JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp ws
24 23 ssrind JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp wAsA
25 inss2 sAA
26 eqid J=J
27 26 cldss AClsdJAJ
28 13 27 syl JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp AJ
29 26 restuni JTopAJA=J𝑡A
30 12 28 29 syl2anc JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp A=J𝑡A
31 25 30 sseqtrid JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp sAJ𝑡A
32 eqid J𝑡A=J𝑡A
33 32 ssnei2 J𝑡ATopwAneiJ𝑡AywAsAsAJ𝑡AsAneiJ𝑡Ay
34 11 22 24 31 33 syl22anc JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp sAneiJ𝑡Ay
35 simprll JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp s𝒫u
36 35 elpwid JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp su
37 36 ssrind JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp sAuA
38 vex sV
39 38 inex1 sAV
40 39 elpw sA𝒫uAsAuA
41 37 40 sylibr JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp sA𝒫uA
42 34 41 elind JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp sAneiJ𝑡Ay𝒫uA
43 25 a1i JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp sAA
44 restabs JTopsAAAClsdJJ𝑡A𝑡sA=J𝑡sA
45 12 43 13 44 syl3anc JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp J𝑡A𝑡sA=J𝑡sA
46 inss1 sAs
47 46 a1i JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp sAs
48 restabs JTopsAss𝒫uJ𝑡s𝑡sA=J𝑡sA
49 12 47 35 48 syl3anc JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp J𝑡s𝑡sA=J𝑡sA
50 45 49 eqtr4d JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp J𝑡A𝑡sA=J𝑡s𝑡sA
51 simprr3 JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp J𝑡sComp
52 incom sA=As
53 eqid As=As
54 ineq1 v=Avs=As
55 54 rspceeqv AClsdJAs=AsvClsdJAs=vs
56 13 53 55 sylancl JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp vClsdJAs=vs
57 simplrl JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp uJ
58 elssuni uJuJ
59 57 58 syl JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp uJ
60 36 59 sstrd JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp sJ
61 26 restcld JTopsJAsClsdJ𝑡svClsdJAs=vs
62 12 60 61 syl2anc JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp AsClsdJ𝑡svClsdJAs=vs
63 56 62 mpbird JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp AsClsdJ𝑡s
64 52 63 eqeltrid JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp sAClsdJ𝑡s
65 cmpcld J𝑡sCompsAClsdJ𝑡sJ𝑡s𝑡sAComp
66 51 64 65 syl2anc JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp J𝑡s𝑡sAComp
67 50 66 eqeltrd JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp J𝑡A𝑡sAComp
68 oveq2 v=sAJ𝑡A𝑡v=J𝑡A𝑡sA
69 68 eleq1d v=sAJ𝑡A𝑡vCompJ𝑡A𝑡sAComp
70 69 rspcev sAneiJ𝑡Ay𝒫uAJ𝑡A𝑡sACompvneiJ𝑡Ay𝒫uAJ𝑡A𝑡vComp
71 42 67 70 syl2anc JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sComp vneiJ𝑡Ay𝒫uAJ𝑡A𝑡vComp
72 71 expr JN-Locally Comp AClsdJ uJyuA s𝒫uwJ ywwsJ𝑡sCompvneiJ𝑡Ay𝒫uAJ𝑡A𝑡vComp
73 72 rexlimdvva JN-Locally Comp AClsdJ uJyuA s𝒫uwJywwsJ𝑡sCompvneiJ𝑡Ay𝒫uAJ𝑡A𝑡vComp
74 10 73 mpd JN-Locally Comp AClsdJ uJyuA vneiJ𝑡Ay𝒫uAJ𝑡A𝑡vComp
75 74 anassrs JN-Locally Comp AClsdJ uJ yuA vneiJ𝑡Ay𝒫uAJ𝑡A𝑡vComp
76 75 ralrimiva JN-Locally Comp AClsdJ uJ yuAvneiJ𝑡Ay𝒫uAJ𝑡A𝑡vComp
77 pweq x=uA𝒫x=𝒫uA
78 77 ineq2d x=uAneiJ𝑡Ay𝒫x=neiJ𝑡Ay𝒫uA
79 78 rexeqdv x=uAvneiJ𝑡Ay𝒫xJ𝑡A𝑡vCompvneiJ𝑡Ay𝒫uAJ𝑡A𝑡vComp
80 79 raleqbi1dv x=uAyxvneiJ𝑡Ay𝒫xJ𝑡A𝑡vCompyuAvneiJ𝑡Ay𝒫uAJ𝑡A𝑡vComp
81 76 80 syl5ibrcom JN-Locally Comp AClsdJ uJ x=uAyxvneiJ𝑡Ay𝒫xJ𝑡A𝑡vComp
82 81 rexlimdva JN-Locally Comp AClsdJ uJx=uAyxvneiJ𝑡Ay𝒫xJ𝑡A𝑡vComp
83 4 82 sylbid JN-Locally Comp AClsdJ xJ𝑡AyxvneiJ𝑡Ay𝒫xJ𝑡A𝑡vComp
84 83 ralrimiv JN-Locally Comp AClsdJ xJ𝑡AyxvneiJ𝑡Ay𝒫xJ𝑡A𝑡vComp
85 isnlly J𝑡AN-Locally Comp J𝑡ATopxJ𝑡AyxvneiJ𝑡Ay𝒫xJ𝑡A𝑡vComp
86 3 84 85 sylanbrc JN-Locally Comp AClsdJ J𝑡AN-Locally Comp