| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nllytop | ⊢ ( 𝐽  ∈  𝑛-Locally  Comp  →  𝐽  ∈  Top ) | 
						
							| 2 |  | resttop | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝐽  ↾t  𝐴 )  ∈  Top ) | 
						
							| 3 | 1 2 | sylan | ⊢ ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝐽  ↾t  𝐴 )  ∈  Top ) | 
						
							| 4 |  | elrest | ⊢ ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝑥  ∈  ( 𝐽  ↾t  𝐴 )  ↔  ∃ 𝑢  ∈  𝐽 𝑥  =  ( 𝑢  ∩  𝐴 ) ) ) | 
						
							| 5 |  | simpll | ⊢ ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  →  𝐽  ∈  𝑛-Locally  Comp ) | 
						
							| 6 |  | simprl | ⊢ ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  →  𝑢  ∈  𝐽 ) | 
						
							| 7 |  | simprr | ⊢ ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  →  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) | 
						
							| 8 | 7 | elin1d | ⊢ ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  →  𝑦  ∈  𝑢 ) | 
						
							| 9 |  | nlly2i | ⊢ ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝑢  ∈  𝐽  ∧  𝑦  ∈  𝑢 )  →  ∃ 𝑠  ∈  𝒫  𝑢 ∃ 𝑤  ∈  𝐽 ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) | 
						
							| 10 | 5 6 8 9 | syl3anc | ⊢ ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  →  ∃ 𝑠  ∈  𝒫  𝑢 ∃ 𝑤  ∈  𝐽 ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) | 
						
							| 11 | 3 | ad2antrr | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( 𝐽  ↾t  𝐴 )  ∈  Top ) | 
						
							| 12 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝐽  ∈  Top ) | 
						
							| 13 |  | simpllr | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝐴  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 14 |  | simprlr | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝑤  ∈  𝐽 ) | 
						
							| 15 |  | elrestr | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑤  ∈  𝐽 )  →  ( 𝑤  ∩  𝐴 )  ∈  ( 𝐽  ↾t  𝐴 ) ) | 
						
							| 16 | 12 13 14 15 | syl3anc | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( 𝑤  ∩  𝐴 )  ∈  ( 𝐽  ↾t  𝐴 ) ) | 
						
							| 17 |  | simprr1 | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝑦  ∈  𝑤 ) | 
						
							| 18 |  | simplrr | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) | 
						
							| 19 | 18 | elin2d | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝑦  ∈  𝐴 ) | 
						
							| 20 | 17 19 | elind | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝑦  ∈  ( 𝑤  ∩  𝐴 ) ) | 
						
							| 21 |  | opnneip | ⊢ ( ( ( 𝐽  ↾t  𝐴 )  ∈  Top  ∧  ( 𝑤  ∩  𝐴 )  ∈  ( 𝐽  ↾t  𝐴 )  ∧  𝑦  ∈  ( 𝑤  ∩  𝐴 ) )  →  ( 𝑤  ∩  𝐴 )  ∈  ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } ) ) | 
						
							| 22 | 11 16 20 21 | syl3anc | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( 𝑤  ∩  𝐴 )  ∈  ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } ) ) | 
						
							| 23 |  | simprr2 | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝑤  ⊆  𝑠 ) | 
						
							| 24 | 23 | ssrind | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( 𝑤  ∩  𝐴 )  ⊆  ( 𝑠  ∩  𝐴 ) ) | 
						
							| 25 |  | inss2 | ⊢ ( 𝑠  ∩  𝐴 )  ⊆  𝐴 | 
						
							| 26 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 27 | 26 | cldss | ⊢ ( 𝐴  ∈  ( Clsd ‘ 𝐽 )  →  𝐴  ⊆  ∪  𝐽 ) | 
						
							| 28 | 13 27 | syl | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝐴  ⊆  ∪  𝐽 ) | 
						
							| 29 | 26 | restuni | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  ∪  𝐽 )  →  𝐴  =  ∪  ( 𝐽  ↾t  𝐴 ) ) | 
						
							| 30 | 12 28 29 | syl2anc | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝐴  =  ∪  ( 𝐽  ↾t  𝐴 ) ) | 
						
							| 31 | 25 30 | sseqtrid | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( 𝑠  ∩  𝐴 )  ⊆  ∪  ( 𝐽  ↾t  𝐴 ) ) | 
						
							| 32 |  | eqid | ⊢ ∪  ( 𝐽  ↾t  𝐴 )  =  ∪  ( 𝐽  ↾t  𝐴 ) | 
						
							| 33 | 32 | ssnei2 | ⊢ ( ( ( ( 𝐽  ↾t  𝐴 )  ∈  Top  ∧  ( 𝑤  ∩  𝐴 )  ∈  ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } ) )  ∧  ( ( 𝑤  ∩  𝐴 )  ⊆  ( 𝑠  ∩  𝐴 )  ∧  ( 𝑠  ∩  𝐴 )  ⊆  ∪  ( 𝐽  ↾t  𝐴 ) ) )  →  ( 𝑠  ∩  𝐴 )  ∈  ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } ) ) | 
						
							| 34 | 11 22 24 31 33 | syl22anc | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( 𝑠  ∩  𝐴 )  ∈  ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } ) ) | 
						
							| 35 |  | simprll | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝑠  ∈  𝒫  𝑢 ) | 
						
							| 36 | 35 | elpwid | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝑠  ⊆  𝑢 ) | 
						
							| 37 | 36 | ssrind | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( 𝑠  ∩  𝐴 )  ⊆  ( 𝑢  ∩  𝐴 ) ) | 
						
							| 38 |  | vex | ⊢ 𝑠  ∈  V | 
						
							| 39 | 38 | inex1 | ⊢ ( 𝑠  ∩  𝐴 )  ∈  V | 
						
							| 40 | 39 | elpw | ⊢ ( ( 𝑠  ∩  𝐴 )  ∈  𝒫  ( 𝑢  ∩  𝐴 )  ↔  ( 𝑠  ∩  𝐴 )  ⊆  ( 𝑢  ∩  𝐴 ) ) | 
						
							| 41 | 37 40 | sylibr | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( 𝑠  ∩  𝐴 )  ∈  𝒫  ( 𝑢  ∩  𝐴 ) ) | 
						
							| 42 | 34 41 | elind | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( 𝑠  ∩  𝐴 )  ∈  ( ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } )  ∩  𝒫  ( 𝑢  ∩  𝐴 ) ) ) | 
						
							| 43 | 25 | a1i | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( 𝑠  ∩  𝐴 )  ⊆  𝐴 ) | 
						
							| 44 |  | restabs | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝑠  ∩  𝐴 )  ⊆  𝐴  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ( 𝐽  ↾t  𝐴 )  ↾t  ( 𝑠  ∩  𝐴 ) )  =  ( 𝐽  ↾t  ( 𝑠  ∩  𝐴 ) ) ) | 
						
							| 45 | 12 43 13 44 | syl3anc | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( ( 𝐽  ↾t  𝐴 )  ↾t  ( 𝑠  ∩  𝐴 ) )  =  ( 𝐽  ↾t  ( 𝑠  ∩  𝐴 ) ) ) | 
						
							| 46 |  | inss1 | ⊢ ( 𝑠  ∩  𝐴 )  ⊆  𝑠 | 
						
							| 47 | 46 | a1i | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( 𝑠  ∩  𝐴 )  ⊆  𝑠 ) | 
						
							| 48 |  | restabs | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝑠  ∩  𝐴 )  ⊆  𝑠  ∧  𝑠  ∈  𝒫  𝑢 )  →  ( ( 𝐽  ↾t  𝑠 )  ↾t  ( 𝑠  ∩  𝐴 ) )  =  ( 𝐽  ↾t  ( 𝑠  ∩  𝐴 ) ) ) | 
						
							| 49 | 12 47 35 48 | syl3anc | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( ( 𝐽  ↾t  𝑠 )  ↾t  ( 𝑠  ∩  𝐴 ) )  =  ( 𝐽  ↾t  ( 𝑠  ∩  𝐴 ) ) ) | 
						
							| 50 | 45 49 | eqtr4d | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( ( 𝐽  ↾t  𝐴 )  ↾t  ( 𝑠  ∩  𝐴 ) )  =  ( ( 𝐽  ↾t  𝑠 )  ↾t  ( 𝑠  ∩  𝐴 ) ) ) | 
						
							| 51 |  | simprr3 | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) | 
						
							| 52 |  | incom | ⊢ ( 𝑠  ∩  𝐴 )  =  ( 𝐴  ∩  𝑠 ) | 
						
							| 53 |  | eqid | ⊢ ( 𝐴  ∩  𝑠 )  =  ( 𝐴  ∩  𝑠 ) | 
						
							| 54 |  | ineq1 | ⊢ ( 𝑣  =  𝐴  →  ( 𝑣  ∩  𝑠 )  =  ( 𝐴  ∩  𝑠 ) ) | 
						
							| 55 | 54 | rspceeqv | ⊢ ( ( 𝐴  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝐴  ∩  𝑠 )  =  ( 𝐴  ∩  𝑠 ) )  →  ∃ 𝑣  ∈  ( Clsd ‘ 𝐽 ) ( 𝐴  ∩  𝑠 )  =  ( 𝑣  ∩  𝑠 ) ) | 
						
							| 56 | 13 53 55 | sylancl | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  ∃ 𝑣  ∈  ( Clsd ‘ 𝐽 ) ( 𝐴  ∩  𝑠 )  =  ( 𝑣  ∩  𝑠 ) ) | 
						
							| 57 |  | simplrl | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝑢  ∈  𝐽 ) | 
						
							| 58 |  | elssuni | ⊢ ( 𝑢  ∈  𝐽  →  𝑢  ⊆  ∪  𝐽 ) | 
						
							| 59 | 57 58 | syl | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝑢  ⊆  ∪  𝐽 ) | 
						
							| 60 | 36 59 | sstrd | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝑠  ⊆  ∪  𝐽 ) | 
						
							| 61 | 26 | restcld | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑠  ⊆  ∪  𝐽 )  →  ( ( 𝐴  ∩  𝑠 )  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝑠 ) )  ↔  ∃ 𝑣  ∈  ( Clsd ‘ 𝐽 ) ( 𝐴  ∩  𝑠 )  =  ( 𝑣  ∩  𝑠 ) ) ) | 
						
							| 62 | 12 60 61 | syl2anc | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( ( 𝐴  ∩  𝑠 )  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝑠 ) )  ↔  ∃ 𝑣  ∈  ( Clsd ‘ 𝐽 ) ( 𝐴  ∩  𝑠 )  =  ( 𝑣  ∩  𝑠 ) ) ) | 
						
							| 63 | 56 62 | mpbird | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( 𝐴  ∩  𝑠 )  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝑠 ) ) ) | 
						
							| 64 | 52 63 | eqeltrid | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( 𝑠  ∩  𝐴 )  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝑠 ) ) ) | 
						
							| 65 |  | cmpcld | ⊢ ( ( ( 𝐽  ↾t  𝑠 )  ∈  Comp  ∧  ( 𝑠  ∩  𝐴 )  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝑠 ) ) )  →  ( ( 𝐽  ↾t  𝑠 )  ↾t  ( 𝑠  ∩  𝐴 ) )  ∈  Comp ) | 
						
							| 66 | 51 64 65 | syl2anc | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( ( 𝐽  ↾t  𝑠 )  ↾t  ( 𝑠  ∩  𝐴 ) )  ∈  Comp ) | 
						
							| 67 | 50 66 | eqeltrd | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( ( 𝐽  ↾t  𝐴 )  ↾t  ( 𝑠  ∩  𝐴 ) )  ∈  Comp ) | 
						
							| 68 |  | oveq2 | ⊢ ( 𝑣  =  ( 𝑠  ∩  𝐴 )  →  ( ( 𝐽  ↾t  𝐴 )  ↾t  𝑣 )  =  ( ( 𝐽  ↾t  𝐴 )  ↾t  ( 𝑠  ∩  𝐴 ) ) ) | 
						
							| 69 | 68 | eleq1d | ⊢ ( 𝑣  =  ( 𝑠  ∩  𝐴 )  →  ( ( ( 𝐽  ↾t  𝐴 )  ↾t  𝑣 )  ∈  Comp  ↔  ( ( 𝐽  ↾t  𝐴 )  ↾t  ( 𝑠  ∩  𝐴 ) )  ∈  Comp ) ) | 
						
							| 70 | 69 | rspcev | ⊢ ( ( ( 𝑠  ∩  𝐴 )  ∈  ( ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } )  ∩  𝒫  ( 𝑢  ∩  𝐴 ) )  ∧  ( ( 𝐽  ↾t  𝐴 )  ↾t  ( 𝑠  ∩  𝐴 ) )  ∈  Comp )  →  ∃ 𝑣  ∈  ( ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } )  ∩  𝒫  ( 𝑢  ∩  𝐴 ) ) ( ( 𝐽  ↾t  𝐴 )  ↾t  𝑣 )  ∈  Comp ) | 
						
							| 71 | 42 67 70 | syl2anc | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp ) ) )  →  ∃ 𝑣  ∈  ( ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } )  ∩  𝒫  ( 𝑢  ∩  𝐴 ) ) ( ( 𝐽  ↾t  𝐴 )  ↾t  𝑣 )  ∈  Comp ) | 
						
							| 72 | 71 | expr | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  ∧  ( 𝑠  ∈  𝒫  𝑢  ∧  𝑤  ∈  𝐽 ) )  →  ( ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp )  →  ∃ 𝑣  ∈  ( ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } )  ∩  𝒫  ( 𝑢  ∩  𝐴 ) ) ( ( 𝐽  ↾t  𝐴 )  ↾t  𝑣 )  ∈  Comp ) ) | 
						
							| 73 | 72 | rexlimdvva | ⊢ ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  →  ( ∃ 𝑠  ∈  𝒫  𝑢 ∃ 𝑤  ∈  𝐽 ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑠  ∧  ( 𝐽  ↾t  𝑠 )  ∈  Comp )  →  ∃ 𝑣  ∈  ( ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } )  ∩  𝒫  ( 𝑢  ∩  𝐴 ) ) ( ( 𝐽  ↾t  𝐴 )  ↾t  𝑣 )  ∈  Comp ) ) | 
						
							| 74 | 10 73 | mpd | ⊢ ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑢  ∈  𝐽  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) ) )  →  ∃ 𝑣  ∈  ( ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } )  ∩  𝒫  ( 𝑢  ∩  𝐴 ) ) ( ( 𝐽  ↾t  𝐴 )  ↾t  𝑣 )  ∈  Comp ) | 
						
							| 75 | 74 | anassrs | ⊢ ( ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑢  ∈  𝐽 )  ∧  𝑦  ∈  ( 𝑢  ∩  𝐴 ) )  →  ∃ 𝑣  ∈  ( ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } )  ∩  𝒫  ( 𝑢  ∩  𝐴 ) ) ( ( 𝐽  ↾t  𝐴 )  ↾t  𝑣 )  ∈  Comp ) | 
						
							| 76 | 75 | ralrimiva | ⊢ ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑢  ∈  𝐽 )  →  ∀ 𝑦  ∈  ( 𝑢  ∩  𝐴 ) ∃ 𝑣  ∈  ( ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } )  ∩  𝒫  ( 𝑢  ∩  𝐴 ) ) ( ( 𝐽  ↾t  𝐴 )  ↾t  𝑣 )  ∈  Comp ) | 
						
							| 77 |  | pweq | ⊢ ( 𝑥  =  ( 𝑢  ∩  𝐴 )  →  𝒫  𝑥  =  𝒫  ( 𝑢  ∩  𝐴 ) ) | 
						
							| 78 | 77 | ineq2d | ⊢ ( 𝑥  =  ( 𝑢  ∩  𝐴 )  →  ( ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } )  ∩  𝒫  𝑥 )  =  ( ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } )  ∩  𝒫  ( 𝑢  ∩  𝐴 ) ) ) | 
						
							| 79 | 78 | rexeqdv | ⊢ ( 𝑥  =  ( 𝑢  ∩  𝐴 )  →  ( ∃ 𝑣  ∈  ( ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } )  ∩  𝒫  𝑥 ) ( ( 𝐽  ↾t  𝐴 )  ↾t  𝑣 )  ∈  Comp  ↔  ∃ 𝑣  ∈  ( ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } )  ∩  𝒫  ( 𝑢  ∩  𝐴 ) ) ( ( 𝐽  ↾t  𝐴 )  ↾t  𝑣 )  ∈  Comp ) ) | 
						
							| 80 | 79 | raleqbi1dv | ⊢ ( 𝑥  =  ( 𝑢  ∩  𝐴 )  →  ( ∀ 𝑦  ∈  𝑥 ∃ 𝑣  ∈  ( ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } )  ∩  𝒫  𝑥 ) ( ( 𝐽  ↾t  𝐴 )  ↾t  𝑣 )  ∈  Comp  ↔  ∀ 𝑦  ∈  ( 𝑢  ∩  𝐴 ) ∃ 𝑣  ∈  ( ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } )  ∩  𝒫  ( 𝑢  ∩  𝐴 ) ) ( ( 𝐽  ↾t  𝐴 )  ↾t  𝑣 )  ∈  Comp ) ) | 
						
							| 81 | 76 80 | syl5ibrcom | ⊢ ( ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑢  ∈  𝐽 )  →  ( 𝑥  =  ( 𝑢  ∩  𝐴 )  →  ∀ 𝑦  ∈  𝑥 ∃ 𝑣  ∈  ( ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } )  ∩  𝒫  𝑥 ) ( ( 𝐽  ↾t  𝐴 )  ↾t  𝑣 )  ∈  Comp ) ) | 
						
							| 82 | 81 | rexlimdva | ⊢ ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ∃ 𝑢  ∈  𝐽 𝑥  =  ( 𝑢  ∩  𝐴 )  →  ∀ 𝑦  ∈  𝑥 ∃ 𝑣  ∈  ( ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } )  ∩  𝒫  𝑥 ) ( ( 𝐽  ↾t  𝐴 )  ↾t  𝑣 )  ∈  Comp ) ) | 
						
							| 83 | 4 82 | sylbid | ⊢ ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝑥  ∈  ( 𝐽  ↾t  𝐴 )  →  ∀ 𝑦  ∈  𝑥 ∃ 𝑣  ∈  ( ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } )  ∩  𝒫  𝑥 ) ( ( 𝐽  ↾t  𝐴 )  ↾t  𝑣 )  ∈  Comp ) ) | 
						
							| 84 | 83 | ralrimiv | ⊢ ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  →  ∀ 𝑥  ∈  ( 𝐽  ↾t  𝐴 ) ∀ 𝑦  ∈  𝑥 ∃ 𝑣  ∈  ( ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } )  ∩  𝒫  𝑥 ) ( ( 𝐽  ↾t  𝐴 )  ↾t  𝑣 )  ∈  Comp ) | 
						
							| 85 |  | isnlly | ⊢ ( ( 𝐽  ↾t  𝐴 )  ∈  𝑛-Locally  Comp  ↔  ( ( 𝐽  ↾t  𝐴 )  ∈  Top  ∧  ∀ 𝑥  ∈  ( 𝐽  ↾t  𝐴 ) ∀ 𝑦  ∈  𝑥 ∃ 𝑣  ∈  ( ( ( nei ‘ ( 𝐽  ↾t  𝐴 ) ) ‘ { 𝑦 } )  ∩  𝒫  𝑥 ) ( ( 𝐽  ↾t  𝐴 )  ↾t  𝑣 )  ∈  Comp ) ) | 
						
							| 86 | 3 84 85 | sylanbrc | ⊢ ( ( 𝐽  ∈  𝑛-Locally  Comp  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝐽  ↾t  𝐴 )  ∈  𝑛-Locally  Comp ) |