Metamath Proof Explorer


Theorem clsval2

Description: Express closure in terms of interior. (Contributed by NM, 10-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis clscld.1 X=J
Assertion clsval2 JTopSXclsJS=XintJXS

Proof

Step Hyp Ref Expression
1 clscld.1 X=J
2 df-rab zClsdJ|Sz=z|zClsdJSz
3 1 cldopn zClsdJXzJ
4 3 ad2antrl JTopSXzClsdJSzXzJ
5 sscon SzXzXS
6 5 ad2antll JTopSXzClsdJSzXzXS
7 1 topopn JTopXJ
8 difexg XJXzV
9 elpwg XzVXz𝒫XSXzXS
10 7 8 9 3syl JTopXz𝒫XSXzXS
11 10 ad2antrr JTopSXzClsdJSzXz𝒫XSXzXS
12 6 11 mpbird JTopSXzClsdJSzXz𝒫XS
13 4 12 elind JTopSXzClsdJSzXzJ𝒫XS
14 1 cldss zClsdJzX
15 14 ad2antrl JTopSXzClsdJSzzX
16 dfss4 zXXXz=z
17 15 16 sylib JTopSXzClsdJSzXXz=z
18 17 eqcomd JTopSXzClsdJSzz=XXz
19 difeq2 x=XzXx=XXz
20 19 rspceeqv XzJ𝒫XSz=XXzxJ𝒫XSz=Xx
21 13 18 20 syl2anc JTopSXzClsdJSzxJ𝒫XSz=Xx
22 21 ex JTopSXzClsdJSzxJ𝒫XSz=Xx
23 simpl JTopSXJTop
24 elinel1 xJ𝒫XSxJ
25 1 opncld JTopxJXxClsdJ
26 23 24 25 syl2an JTopSXxJ𝒫XSXxClsdJ
27 elinel2 xJ𝒫XSx𝒫XS
28 27 adantl JTopSXxJ𝒫XSx𝒫XS
29 28 elpwid JTopSXxJ𝒫XSxXS
30 29 difss2d JTopSXxJ𝒫XSxX
31 simplr JTopSXxJ𝒫XSSX
32 ssconb xXSXxXSSXx
33 30 31 32 syl2anc JTopSXxJ𝒫XSxXSSXx
34 29 33 mpbid JTopSXxJ𝒫XSSXx
35 26 34 jca JTopSXxJ𝒫XSXxClsdJSXx
36 eleq1 z=XxzClsdJXxClsdJ
37 sseq2 z=XxSzSXx
38 36 37 anbi12d z=XxzClsdJSzXxClsdJSXx
39 35 38 syl5ibrcom JTopSXxJ𝒫XSz=XxzClsdJSz
40 39 rexlimdva JTopSXxJ𝒫XSz=XxzClsdJSz
41 22 40 impbid JTopSXzClsdJSzxJ𝒫XSz=Xx
42 41 abbidv JTopSXz|zClsdJSz=z|xJ𝒫XSz=Xx
43 2 42 eqtrid JTopSXzClsdJ|Sz=z|xJ𝒫XSz=Xx
44 43 inteqd JTopSXzClsdJ|Sz=z|xJ𝒫XSz=Xx
45 difexg XJXxV
46 45 ralrimivw XJxJ𝒫XSXxV
47 dfiin2g xJ𝒫XSXxVxJ𝒫XSXx=z|xJ𝒫XSz=Xx
48 7 46 47 3syl JTopxJ𝒫XSXx=z|xJ𝒫XSz=Xx
49 48 adantr JTopSXxJ𝒫XSXx=z|xJ𝒫XSz=Xx
50 44 49 eqtr4d JTopSXzClsdJ|Sz=xJ𝒫XSXx
51 1 clsval JTopSXclsJS=zClsdJ|Sz
52 uniiun J𝒫XS=xJ𝒫XSx
53 52 difeq2i XJ𝒫XS=XxJ𝒫XSx
54 53 a1i JTopSXXJ𝒫XS=XxJ𝒫XSx
55 0opn JTopJ
56 55 adantr JTopSXJ
57 0elpw 𝒫XS
58 57 a1i JTopSX𝒫XS
59 56 58 elind JTopSXJ𝒫XS
60 ne0i J𝒫XSJ𝒫XS
61 iindif2 J𝒫XSxJ𝒫XSXx=XxJ𝒫XSx
62 59 60 61 3syl JTopSXxJ𝒫XSXx=XxJ𝒫XSx
63 54 62 eqtr4d JTopSXXJ𝒫XS=xJ𝒫XSXx
64 50 51 63 3eqtr4d JTopSXclsJS=XJ𝒫XS
65 difssd SXXSX
66 1 ntrval JTopXSXintJXS=J𝒫XS
67 65 66 sylan2 JTopSXintJXS=J𝒫XS
68 67 difeq2d JTopSXXintJXS=XJ𝒫XS
69 64 68 eqtr4d JTopSXclsJS=XintJXS