Description: Express closure in terms of interior. (Contributed by NM, 10-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clscld.1 | |
|
Assertion | clsval2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | |
|
2 | df-rab | |
|
3 | 1 | cldopn | |
4 | 3 | ad2antrl | |
5 | sscon | |
|
6 | 5 | ad2antll | |
7 | 1 | topopn | |
8 | difexg | |
|
9 | elpwg | |
|
10 | 7 8 9 | 3syl | |
11 | 10 | ad2antrr | |
12 | 6 11 | mpbird | |
13 | 4 12 | elind | |
14 | 1 | cldss | |
15 | 14 | ad2antrl | |
16 | dfss4 | |
|
17 | 15 16 | sylib | |
18 | 17 | eqcomd | |
19 | difeq2 | |
|
20 | 19 | rspceeqv | |
21 | 13 18 20 | syl2anc | |
22 | 21 | ex | |
23 | simpl | |
|
24 | elinel1 | |
|
25 | 1 | opncld | |
26 | 23 24 25 | syl2an | |
27 | elinel2 | |
|
28 | 27 | adantl | |
29 | 28 | elpwid | |
30 | 29 | difss2d | |
31 | simplr | |
|
32 | ssconb | |
|
33 | 30 31 32 | syl2anc | |
34 | 29 33 | mpbid | |
35 | 26 34 | jca | |
36 | eleq1 | |
|
37 | sseq2 | |
|
38 | 36 37 | anbi12d | |
39 | 35 38 | syl5ibrcom | |
40 | 39 | rexlimdva | |
41 | 22 40 | impbid | |
42 | 41 | abbidv | |
43 | 2 42 | eqtrid | |
44 | 43 | inteqd | |
45 | difexg | |
|
46 | 45 | ralrimivw | |
47 | dfiin2g | |
|
48 | 7 46 47 | 3syl | |
49 | 48 | adantr | |
50 | 44 49 | eqtr4d | |
51 | 1 | clsval | |
52 | uniiun | |
|
53 | 52 | difeq2i | |
54 | 53 | a1i | |
55 | 0opn | |
|
56 | 55 | adantr | |
57 | 0elpw | |
|
58 | 57 | a1i | |
59 | 56 58 | elind | |
60 | ne0i | |
|
61 | iindif2 | |
|
62 | 59 60 61 | 3syl | |
63 | 54 62 | eqtr4d | |
64 | 50 51 63 | 3eqtr4d | |
65 | difssd | |
|
66 | 1 | ntrval | |
67 | 65 66 | sylan2 | |
68 | 67 | difeq2d | |
69 | 64 68 | eqtr4d | |