| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clscld.1 |  | 
						
							| 2 |  | df-rab |  | 
						
							| 3 | 1 | cldopn |  | 
						
							| 4 | 3 | ad2antrl |  | 
						
							| 5 |  | sscon |  | 
						
							| 6 | 5 | ad2antll |  | 
						
							| 7 | 1 | topopn |  | 
						
							| 8 |  | difexg |  | 
						
							| 9 |  | elpwg |  | 
						
							| 10 | 7 8 9 | 3syl |  | 
						
							| 11 | 10 | ad2antrr |  | 
						
							| 12 | 6 11 | mpbird |  | 
						
							| 13 | 4 12 | elind |  | 
						
							| 14 | 1 | cldss |  | 
						
							| 15 | 14 | ad2antrl |  | 
						
							| 16 |  | dfss4 |  | 
						
							| 17 | 15 16 | sylib |  | 
						
							| 18 | 17 | eqcomd |  | 
						
							| 19 |  | difeq2 |  | 
						
							| 20 | 19 | rspceeqv |  | 
						
							| 21 | 13 18 20 | syl2anc |  | 
						
							| 22 | 21 | ex |  | 
						
							| 23 |  | simpl |  | 
						
							| 24 |  | elinel1 |  | 
						
							| 25 | 1 | opncld |  | 
						
							| 26 | 23 24 25 | syl2an |  | 
						
							| 27 |  | elinel2 |  | 
						
							| 28 | 27 | adantl |  | 
						
							| 29 | 28 | elpwid |  | 
						
							| 30 | 29 | difss2d |  | 
						
							| 31 |  | simplr |  | 
						
							| 32 |  | ssconb |  | 
						
							| 33 | 30 31 32 | syl2anc |  | 
						
							| 34 | 29 33 | mpbid |  | 
						
							| 35 | 26 34 | jca |  | 
						
							| 36 |  | eleq1 |  | 
						
							| 37 |  | sseq2 |  | 
						
							| 38 | 36 37 | anbi12d |  | 
						
							| 39 | 35 38 | syl5ibrcom |  | 
						
							| 40 | 39 | rexlimdva |  | 
						
							| 41 | 22 40 | impbid |  | 
						
							| 42 | 41 | abbidv |  | 
						
							| 43 | 2 42 | eqtrid |  | 
						
							| 44 | 43 | inteqd |  | 
						
							| 45 |  | difexg |  | 
						
							| 46 | 45 | ralrimivw |  | 
						
							| 47 |  | dfiin2g |  | 
						
							| 48 | 7 46 47 | 3syl |  | 
						
							| 49 | 48 | adantr |  | 
						
							| 50 | 44 49 | eqtr4d |  | 
						
							| 51 | 1 | clsval |  | 
						
							| 52 |  | uniiun |  | 
						
							| 53 | 52 | difeq2i |  | 
						
							| 54 | 53 | a1i |  | 
						
							| 55 |  | 0opn |  | 
						
							| 56 | 55 | adantr |  | 
						
							| 57 |  | 0elpw |  | 
						
							| 58 | 57 | a1i |  | 
						
							| 59 | 56 58 | elind |  | 
						
							| 60 |  | ne0i |  | 
						
							| 61 |  | iindif2 |  | 
						
							| 62 | 59 60 61 | 3syl |  | 
						
							| 63 | 54 62 | eqtr4d |  | 
						
							| 64 | 50 51 63 | 3eqtr4d |  | 
						
							| 65 |  | difssd |  | 
						
							| 66 | 1 | ntrval |  | 
						
							| 67 | 65 66 | sylan2 |  | 
						
							| 68 | 67 | difeq2d |  | 
						
							| 69 | 64 68 | eqtr4d |  |