Metamath Proof Explorer


Theorem clsval2

Description: Express closure in terms of interior. (Contributed by NM, 10-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis clscld.1 X = J
Assertion clsval2 J Top S X cls J S = X int J X S

Proof

Step Hyp Ref Expression
1 clscld.1 X = J
2 df-rab z Clsd J | S z = z | z Clsd J S z
3 1 cldopn z Clsd J X z J
4 3 ad2antrl J Top S X z Clsd J S z X z J
5 sscon S z X z X S
6 5 ad2antll J Top S X z Clsd J S z X z X S
7 1 topopn J Top X J
8 difexg X J X z V
9 elpwg X z V X z 𝒫 X S X z X S
10 7 8 9 3syl J Top X z 𝒫 X S X z X S
11 10 ad2antrr J Top S X z Clsd J S z X z 𝒫 X S X z X S
12 6 11 mpbird J Top S X z Clsd J S z X z 𝒫 X S
13 4 12 elind J Top S X z Clsd J S z X z J 𝒫 X S
14 1 cldss z Clsd J z X
15 14 ad2antrl J Top S X z Clsd J S z z X
16 dfss4 z X X X z = z
17 15 16 sylib J Top S X z Clsd J S z X X z = z
18 17 eqcomd J Top S X z Clsd J S z z = X X z
19 difeq2 x = X z X x = X X z
20 19 rspceeqv X z J 𝒫 X S z = X X z x J 𝒫 X S z = X x
21 13 18 20 syl2anc J Top S X z Clsd J S z x J 𝒫 X S z = X x
22 21 ex J Top S X z Clsd J S z x J 𝒫 X S z = X x
23 simpl J Top S X J Top
24 elinel1 x J 𝒫 X S x J
25 1 opncld J Top x J X x Clsd J
26 23 24 25 syl2an J Top S X x J 𝒫 X S X x Clsd J
27 elinel2 x J 𝒫 X S x 𝒫 X S
28 27 adantl J Top S X x J 𝒫 X S x 𝒫 X S
29 28 elpwid J Top S X x J 𝒫 X S x X S
30 29 difss2d J Top S X x J 𝒫 X S x X
31 simplr J Top S X x J 𝒫 X S S X
32 ssconb x X S X x X S S X x
33 30 31 32 syl2anc J Top S X x J 𝒫 X S x X S S X x
34 29 33 mpbid J Top S X x J 𝒫 X S S X x
35 26 34 jca J Top S X x J 𝒫 X S X x Clsd J S X x
36 eleq1 z = X x z Clsd J X x Clsd J
37 sseq2 z = X x S z S X x
38 36 37 anbi12d z = X x z Clsd J S z X x Clsd J S X x
39 35 38 syl5ibrcom J Top S X x J 𝒫 X S z = X x z Clsd J S z
40 39 rexlimdva J Top S X x J 𝒫 X S z = X x z Clsd J S z
41 22 40 impbid J Top S X z Clsd J S z x J 𝒫 X S z = X x
42 41 abbidv J Top S X z | z Clsd J S z = z | x J 𝒫 X S z = X x
43 2 42 eqtrid J Top S X z Clsd J | S z = z | x J 𝒫 X S z = X x
44 43 inteqd J Top S X z Clsd J | S z = z | x J 𝒫 X S z = X x
45 difexg X J X x V
46 45 ralrimivw X J x J 𝒫 X S X x V
47 dfiin2g x J 𝒫 X S X x V x J 𝒫 X S X x = z | x J 𝒫 X S z = X x
48 7 46 47 3syl J Top x J 𝒫 X S X x = z | x J 𝒫 X S z = X x
49 48 adantr J Top S X x J 𝒫 X S X x = z | x J 𝒫 X S z = X x
50 44 49 eqtr4d J Top S X z Clsd J | S z = x J 𝒫 X S X x
51 1 clsval J Top S X cls J S = z Clsd J | S z
52 uniiun J 𝒫 X S = x J 𝒫 X S x
53 52 difeq2i X J 𝒫 X S = X x J 𝒫 X S x
54 53 a1i J Top S X X J 𝒫 X S = X x J 𝒫 X S x
55 0opn J Top J
56 55 adantr J Top S X J
57 0elpw 𝒫 X S
58 57 a1i J Top S X 𝒫 X S
59 56 58 elind J Top S X J 𝒫 X S
60 ne0i J 𝒫 X S J 𝒫 X S
61 iindif2 J 𝒫 X S x J 𝒫 X S X x = X x J 𝒫 X S x
62 59 60 61 3syl J Top S X x J 𝒫 X S X x = X x J 𝒫 X S x
63 54 62 eqtr4d J Top S X X J 𝒫 X S = x J 𝒫 X S X x
64 50 51 63 3eqtr4d J Top S X cls J S = X J 𝒫 X S
65 difssd S X X S X
66 1 ntrval J Top X S X int J X S = J 𝒫 X S
67 65 66 sylan2 J Top S X int J X S = J 𝒫 X S
68 67 difeq2d J Top S X X int J X S = X J 𝒫 X S
69 64 68 eqtr4d J Top S X cls J S = X int J X S