Description: A subspace of a complete metric space is complete iff it is closed in the parent space. Theorem 1.4-7 of Kreyszig p. 30. (Contributed by NM, 28-Jan-2008) (Revised by Mario Carneiro, 15-Oct-2015) (Proof shortened by AV, 9-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | metsscmetcld.j | |
|
Assertion | cmetss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metsscmetcld.j | |
|
2 | cmetmet | |
|
3 | 1 | metsscmetcld | |
4 | 2 3 | sylan | |
5 | 2 | adantr | |
6 | eqid | |
|
7 | 6 | cldss | |
8 | 7 | adantl | |
9 | metxmet | |
|
10 | 1 | mopnuni | |
11 | 5 9 10 | 3syl | |
12 | 8 11 | sseqtrrd | |
13 | metres2 | |
|
14 | 5 12 13 | syl2anc | |
15 | 2 9 | syl | |
16 | 15 | ad2antrr | |
17 | 12 | adantr | |
18 | eqid | |
|
19 | eqid | |
|
20 | 18 1 19 | metrest | |
21 | 16 17 20 | syl2anc | |
22 | 21 | eqcomd | |
23 | metxmet | |
|
24 | 14 23 | syl | |
25 | cfilfil | |
|
26 | 24 25 | sylan | |
27 | elfvdm | |
|
28 | 27 | ad2antrr | |
29 | trfg | |
|
30 | 26 17 28 29 | syl3anc | |
31 | 30 | eqcomd | |
32 | 22 31 | oveq12d | |
33 | 1 | mopntopon | |
34 | 16 33 | syl | |
35 | filfbas | |
|
36 | 26 35 | syl | |
37 | filsspw | |
|
38 | 26 37 | syl | |
39 | 17 | sspwd | |
40 | 38 39 | sstrd | |
41 | fbasweak | |
|
42 | 36 40 28 41 | syl3anc | |
43 | fgcl | |
|
44 | 42 43 | syl | |
45 | ssfg | |
|
46 | 42 45 | syl | |
47 | filtop | |
|
48 | 26 47 | syl | |
49 | 46 48 | sseldd | |
50 | flimrest | |
|
51 | 34 44 49 50 | syl3anc | |
52 | flimclsi | |
|
53 | 49 52 | syl | |
54 | cldcls | |
|
55 | 54 | ad2antlr | |
56 | 53 55 | sseqtrd | |
57 | df-ss | |
|
58 | 56 57 | sylib | |
59 | 32 51 58 | 3eqtrd | |
60 | simpll | |
|
61 | 5 9 | syl | |
62 | cfilresi | |
|
63 | 61 62 | sylan | |
64 | 1 | cmetcvg | |
65 | 60 63 64 | syl2anc | |
66 | 59 65 | eqnetrd | |
67 | 66 | ralrimiva | |
68 | 19 | iscmet | |
69 | 14 67 68 | sylanbrc | |
70 | 4 69 | impbida | |