Metamath Proof Explorer


Theorem cmetss

Description: A subspace of a complete metric space is complete iff it is closed in the parent space. Theorem 1.4-7 of Kreyszig p. 30. (Contributed by NM, 28-Jan-2008) (Revised by Mario Carneiro, 15-Oct-2015) (Proof shortened by AV, 9-Oct-2022)

Ref Expression
Hypothesis metsscmetcld.j J=MetOpenD
Assertion cmetss DCMetXDY×YCMetYYClsdJ

Proof

Step Hyp Ref Expression
1 metsscmetcld.j J=MetOpenD
2 cmetmet DCMetXDMetX
3 1 metsscmetcld DMetXDY×YCMetYYClsdJ
4 2 3 sylan DCMetXDY×YCMetYYClsdJ
5 2 adantr DCMetXYClsdJDMetX
6 eqid J=J
7 6 cldss YClsdJYJ
8 7 adantl DCMetXYClsdJYJ
9 metxmet DMetXD∞MetX
10 1 mopnuni D∞MetXX=J
11 5 9 10 3syl DCMetXYClsdJX=J
12 8 11 sseqtrrd DCMetXYClsdJYX
13 metres2 DMetXYXDY×YMetY
14 5 12 13 syl2anc DCMetXYClsdJDY×YMetY
15 2 9 syl DCMetXD∞MetX
16 15 ad2antrr DCMetXYClsdJfCauFilDY×YD∞MetX
17 12 adantr DCMetXYClsdJfCauFilDY×YYX
18 eqid DY×Y=DY×Y
19 eqid MetOpenDY×Y=MetOpenDY×Y
20 18 1 19 metrest D∞MetXYXJ𝑡Y=MetOpenDY×Y
21 16 17 20 syl2anc DCMetXYClsdJfCauFilDY×YJ𝑡Y=MetOpenDY×Y
22 21 eqcomd DCMetXYClsdJfCauFilDY×YMetOpenDY×Y=J𝑡Y
23 metxmet DY×YMetYDY×Y∞MetY
24 14 23 syl DCMetXYClsdJDY×Y∞MetY
25 cfilfil DY×Y∞MetYfCauFilDY×YfFilY
26 24 25 sylan DCMetXYClsdJfCauFilDY×YfFilY
27 elfvdm DCMetXXdomCMet
28 27 ad2antrr DCMetXYClsdJfCauFilDY×YXdomCMet
29 trfg fFilYYXXdomCMetXfilGenf𝑡Y=f
30 26 17 28 29 syl3anc DCMetXYClsdJfCauFilDY×YXfilGenf𝑡Y=f
31 30 eqcomd DCMetXYClsdJfCauFilDY×Yf=XfilGenf𝑡Y
32 22 31 oveq12d DCMetXYClsdJfCauFilDY×YMetOpenDY×YfLimf=J𝑡YfLimXfilGenf𝑡Y
33 1 mopntopon D∞MetXJTopOnX
34 16 33 syl DCMetXYClsdJfCauFilDY×YJTopOnX
35 filfbas fFilYffBasY
36 26 35 syl DCMetXYClsdJfCauFilDY×YffBasY
37 filsspw fFilYf𝒫Y
38 26 37 syl DCMetXYClsdJfCauFilDY×Yf𝒫Y
39 17 sspwd DCMetXYClsdJfCauFilDY×Y𝒫Y𝒫X
40 38 39 sstrd DCMetXYClsdJfCauFilDY×Yf𝒫X
41 fbasweak ffBasYf𝒫XXdomCMetffBasX
42 36 40 28 41 syl3anc DCMetXYClsdJfCauFilDY×YffBasX
43 fgcl ffBasXXfilGenfFilX
44 42 43 syl DCMetXYClsdJfCauFilDY×YXfilGenfFilX
45 ssfg ffBasXfXfilGenf
46 42 45 syl DCMetXYClsdJfCauFilDY×YfXfilGenf
47 filtop fFilYYf
48 26 47 syl DCMetXYClsdJfCauFilDY×YYf
49 46 48 sseldd DCMetXYClsdJfCauFilDY×YYXfilGenf
50 flimrest JTopOnXXfilGenfFilXYXfilGenfJ𝑡YfLimXfilGenf𝑡Y=JfLimXfilGenfY
51 34 44 49 50 syl3anc DCMetXYClsdJfCauFilDY×YJ𝑡YfLimXfilGenf𝑡Y=JfLimXfilGenfY
52 flimclsi YXfilGenfJfLimXfilGenfclsJY
53 49 52 syl DCMetXYClsdJfCauFilDY×YJfLimXfilGenfclsJY
54 cldcls YClsdJclsJY=Y
55 54 ad2antlr DCMetXYClsdJfCauFilDY×YclsJY=Y
56 53 55 sseqtrd DCMetXYClsdJfCauFilDY×YJfLimXfilGenfY
57 df-ss JfLimXfilGenfYJfLimXfilGenfY=JfLimXfilGenf
58 56 57 sylib DCMetXYClsdJfCauFilDY×YJfLimXfilGenfY=JfLimXfilGenf
59 32 51 58 3eqtrd DCMetXYClsdJfCauFilDY×YMetOpenDY×YfLimf=JfLimXfilGenf
60 simpll DCMetXYClsdJfCauFilDY×YDCMetX
61 5 9 syl DCMetXYClsdJD∞MetX
62 cfilresi D∞MetXfCauFilDY×YXfilGenfCauFilD
63 61 62 sylan DCMetXYClsdJfCauFilDY×YXfilGenfCauFilD
64 1 cmetcvg DCMetXXfilGenfCauFilDJfLimXfilGenf
65 60 63 64 syl2anc DCMetXYClsdJfCauFilDY×YJfLimXfilGenf
66 59 65 eqnetrd DCMetXYClsdJfCauFilDY×YMetOpenDY×YfLimf
67 66 ralrimiva DCMetXYClsdJfCauFilDY×YMetOpenDY×YfLimf
68 19 iscmet DY×YCMetYDY×YMetYfCauFilDY×YMetOpenDY×YfLimf
69 14 67 68 sylanbrc DCMetXYClsdJDY×YCMetY
70 4 69 impbida DCMetXDY×YCMetYYClsdJ