Metamath Proof Explorer


Theorem cnextf

Description: Extension by continuity. The extension by continuity is a function. (Contributed by Thierry Arnoux, 25-Dec-2017)

Ref Expression
Hypotheses cnextf.1 C = J
cnextf.2 B = K
cnextf.3 φ J Top
cnextf.4 φ K Haus
cnextf.5 φ F : A B
cnextf.a φ A C
cnextf.6 φ cls J A = C
cnextf.7 φ x C K fLimf nei J x 𝑡 A F
Assertion cnextf φ J CnExt K F : C B

Proof

Step Hyp Ref Expression
1 cnextf.1 C = J
2 cnextf.2 B = K
3 cnextf.3 φ J Top
4 cnextf.4 φ K Haus
5 cnextf.5 φ F : A B
6 cnextf.a φ A C
7 cnextf.6 φ cls J A = C
8 cnextf.7 φ x C K fLimf nei J x 𝑡 A F
9 1 2 cnextfun J Top K Haus F : A B A C Fun J CnExt K F
10 3 4 5 6 9 syl22anc φ Fun J CnExt K F
11 simpl φ x C φ
12 7 eleq2d φ x cls J A x C
13 12 biimpar φ x C x cls J A
14 n0 K fLimf nei J x 𝑡 A F y y K fLimf nei J x 𝑡 A F
15 8 14 sylib φ x C y y K fLimf nei J x 𝑡 A F
16 haustop K Haus K Top
17 4 16 syl φ K Top
18 1 2 cnextfval J Top K Top F : A B A C J CnExt K F = x cls J A x × K fLimf nei J x 𝑡 A F
19 3 17 5 6 18 syl22anc φ J CnExt K F = x cls J A x × K fLimf nei J x 𝑡 A F
20 19 eleq2d φ x y J CnExt K F x y x cls J A x × K fLimf nei J x 𝑡 A F
21 opeliunxp x y x cls J A x × K fLimf nei J x 𝑡 A F x cls J A y K fLimf nei J x 𝑡 A F
22 20 21 syl6bb φ x y J CnExt K F x cls J A y K fLimf nei J x 𝑡 A F
23 22 exbidv φ y x y J CnExt K F y x cls J A y K fLimf nei J x 𝑡 A F
24 19.42v y x cls J A y K fLimf nei J x 𝑡 A F x cls J A y y K fLimf nei J x 𝑡 A F
25 23 24 syl6bb φ y x y J CnExt K F x cls J A y y K fLimf nei J x 𝑡 A F
26 25 biimpar φ x cls J A y y K fLimf nei J x 𝑡 A F y x y J CnExt K F
27 11 13 15 26 syl12anc φ x C y x y J CnExt K F
28 25 simprbda φ y x y J CnExt K F x cls J A
29 12 adantr φ y x y J CnExt K F x cls J A x C
30 28 29 mpbid φ y x y J CnExt K F x C
31 27 30 impbida φ x C y x y J CnExt K F
32 31 abbi2dv φ C = x | y x y J CnExt K F
33 dfdm3 dom J CnExt K F = x | y x y J CnExt K F
34 32 33 syl6reqr φ dom J CnExt K F = C
35 df-fn J CnExt K F Fn C Fun J CnExt K F dom J CnExt K F = C
36 10 34 35 sylanbrc φ J CnExt K F Fn C
37 19 rneqd φ ran J CnExt K F = ran x cls J A x × K fLimf nei J x 𝑡 A F
38 rniun ran x cls J A x × K fLimf nei J x 𝑡 A F = x cls J A ran x × K fLimf nei J x 𝑡 A F
39 vex x V
40 39 snnz x
41 rnxp x ran x × K fLimf nei J x 𝑡 A F = K fLimf nei J x 𝑡 A F
42 40 41 ax-mp ran x × K fLimf nei J x 𝑡 A F = K fLimf nei J x 𝑡 A F
43 12 biimpa φ x cls J A x C
44 2 toptopon K Top K TopOn B
45 17 44 sylib φ K TopOn B
46 45 adantr φ x C K TopOn B
47 1 toptopon J Top J TopOn C
48 3 47 sylib φ J TopOn C
49 48 adantr φ x C J TopOn C
50 6 adantr φ x C A C
51 simpr φ x C x C
52 trnei J TopOn C A C x C x cls J A nei J x 𝑡 A Fil A
53 52 biimpa J TopOn C A C x C x cls J A nei J x 𝑡 A Fil A
54 49 50 51 13 53 syl31anc φ x C nei J x 𝑡 A Fil A
55 5 adantr φ x C F : A B
56 flfelbas K TopOn B nei J x 𝑡 A Fil A F : A B y K fLimf nei J x 𝑡 A F y B
57 56 ex K TopOn B nei J x 𝑡 A Fil A F : A B y K fLimf nei J x 𝑡 A F y B
58 57 ssrdv K TopOn B nei J x 𝑡 A Fil A F : A B K fLimf nei J x 𝑡 A F B
59 46 54 55 58 syl3anc φ x C K fLimf nei J x 𝑡 A F B
60 43 59 syldan φ x cls J A K fLimf nei J x 𝑡 A F B
61 42 60 eqsstrid φ x cls J A ran x × K fLimf nei J x 𝑡 A F B
62 61 ralrimiva φ x cls J A ran x × K fLimf nei J x 𝑡 A F B
63 iunss x cls J A ran x × K fLimf nei J x 𝑡 A F B x cls J A ran x × K fLimf nei J x 𝑡 A F B
64 62 63 sylibr φ x cls J A ran x × K fLimf nei J x 𝑡 A F B
65 38 64 eqsstrid φ ran x cls J A x × K fLimf nei J x 𝑡 A F B
66 37 65 eqsstrd φ ran J CnExt K F B
67 df-f J CnExt K F : C B J CnExt K F Fn C ran J CnExt K F B
68 36 66 67 sylanbrc φ J CnExt K F : C B