Metamath Proof Explorer


Theorem cnextf

Description: Extension by continuity. The extension by continuity is a function. (Contributed by Thierry Arnoux, 25-Dec-2017)

Ref Expression
Hypotheses cnextf.1 C=J
cnextf.2 B=K
cnextf.3 φJTop
cnextf.4 φKHaus
cnextf.5 φF:AB
cnextf.a φAC
cnextf.6 φclsJA=C
cnextf.7 φxCKfLimfneiJx𝑡AF
Assertion cnextf φJCnExtKF:CB

Proof

Step Hyp Ref Expression
1 cnextf.1 C=J
2 cnextf.2 B=K
3 cnextf.3 φJTop
4 cnextf.4 φKHaus
5 cnextf.5 φF:AB
6 cnextf.a φAC
7 cnextf.6 φclsJA=C
8 cnextf.7 φxCKfLimfneiJx𝑡AF
9 1 2 cnextfun JTopKHausF:ABACFunJCnExtKF
10 3 4 5 6 9 syl22anc φFunJCnExtKF
11 dfdm3 domJCnExtKF=x|yxyJCnExtKF
12 simpl φxCφ
13 7 eleq2d φxclsJAxC
14 13 biimpar φxCxclsJA
15 n0 KfLimfneiJx𝑡AFyyKfLimfneiJx𝑡AF
16 8 15 sylib φxCyyKfLimfneiJx𝑡AF
17 haustop KHausKTop
18 4 17 syl φKTop
19 1 2 cnextfval JTopKTopF:ABACJCnExtKF=xclsJAx×KfLimfneiJx𝑡AF
20 3 18 5 6 19 syl22anc φJCnExtKF=xclsJAx×KfLimfneiJx𝑡AF
21 20 eleq2d φxyJCnExtKFxyxclsJAx×KfLimfneiJx𝑡AF
22 opeliunxp xyxclsJAx×KfLimfneiJx𝑡AFxclsJAyKfLimfneiJx𝑡AF
23 21 22 bitrdi φxyJCnExtKFxclsJAyKfLimfneiJx𝑡AF
24 23 exbidv φyxyJCnExtKFyxclsJAyKfLimfneiJx𝑡AF
25 19.42v yxclsJAyKfLimfneiJx𝑡AFxclsJAyyKfLimfneiJx𝑡AF
26 24 25 bitrdi φyxyJCnExtKFxclsJAyyKfLimfneiJx𝑡AF
27 26 biimpar φxclsJAyyKfLimfneiJx𝑡AFyxyJCnExtKF
28 12 14 16 27 syl12anc φxCyxyJCnExtKF
29 26 simprbda φyxyJCnExtKFxclsJA
30 13 adantr φyxyJCnExtKFxclsJAxC
31 29 30 mpbid φyxyJCnExtKFxC
32 28 31 impbida φxCyxyJCnExtKF
33 32 eqabdv φC=x|yxyJCnExtKF
34 11 33 eqtr4id φdomJCnExtKF=C
35 df-fn JCnExtKFFnCFunJCnExtKFdomJCnExtKF=C
36 10 34 35 sylanbrc φJCnExtKFFnC
37 20 rneqd φranJCnExtKF=ranxclsJAx×KfLimfneiJx𝑡AF
38 rniun ranxclsJAx×KfLimfneiJx𝑡AF=xclsJAranx×KfLimfneiJx𝑡AF
39 vex xV
40 39 snnz x
41 rnxp xranx×KfLimfneiJx𝑡AF=KfLimfneiJx𝑡AF
42 40 41 ax-mp ranx×KfLimfneiJx𝑡AF=KfLimfneiJx𝑡AF
43 13 biimpa φxclsJAxC
44 2 toptopon KTopKTopOnB
45 18 44 sylib φKTopOnB
46 45 adantr φxCKTopOnB
47 1 toptopon JTopJTopOnC
48 3 47 sylib φJTopOnC
49 48 adantr φxCJTopOnC
50 6 adantr φxCAC
51 simpr φxCxC
52 trnei JTopOnCACxCxclsJAneiJx𝑡AFilA
53 52 biimpa JTopOnCACxCxclsJAneiJx𝑡AFilA
54 49 50 51 14 53 syl31anc φxCneiJx𝑡AFilA
55 5 adantr φxCF:AB
56 flfelbas KTopOnBneiJx𝑡AFilAF:AByKfLimfneiJx𝑡AFyB
57 56 ex KTopOnBneiJx𝑡AFilAF:AByKfLimfneiJx𝑡AFyB
58 57 ssrdv KTopOnBneiJx𝑡AFilAF:ABKfLimfneiJx𝑡AFB
59 46 54 55 58 syl3anc φxCKfLimfneiJx𝑡AFB
60 43 59 syldan φxclsJAKfLimfneiJx𝑡AFB
61 42 60 eqsstrid φxclsJAranx×KfLimfneiJx𝑡AFB
62 61 ralrimiva φxclsJAranx×KfLimfneiJx𝑡AFB
63 iunss xclsJAranx×KfLimfneiJx𝑡AFBxclsJAranx×KfLimfneiJx𝑡AFB
64 62 63 sylibr φxclsJAranx×KfLimfneiJx𝑡AFB
65 38 64 eqsstrid φranxclsJAx×KfLimfneiJx𝑡AFB
66 37 65 eqsstrd φranJCnExtKFB
67 df-f JCnExtKF:CBJCnExtKFFnCranJCnExtKFB
68 36 66 67 sylanbrc φJCnExtKF:CB