Description: Extension by continuity. The extension by continuity is a function. (Contributed by Thierry Arnoux, 25-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cnextf.1 | |
|
cnextf.2 | |
||
cnextf.3 | |
||
cnextf.4 | |
||
cnextf.5 | |
||
cnextf.a | |
||
cnextf.6 | |
||
cnextf.7 | |
||
Assertion | cnextf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnextf.1 | |
|
2 | cnextf.2 | |
|
3 | cnextf.3 | |
|
4 | cnextf.4 | |
|
5 | cnextf.5 | |
|
6 | cnextf.a | |
|
7 | cnextf.6 | |
|
8 | cnextf.7 | |
|
9 | 1 2 | cnextfun | |
10 | 3 4 5 6 9 | syl22anc | |
11 | dfdm3 | |
|
12 | simpl | |
|
13 | 7 | eleq2d | |
14 | 13 | biimpar | |
15 | n0 | |
|
16 | 8 15 | sylib | |
17 | haustop | |
|
18 | 4 17 | syl | |
19 | 1 2 | cnextfval | |
20 | 3 18 5 6 19 | syl22anc | |
21 | 20 | eleq2d | |
22 | opeliunxp | |
|
23 | 21 22 | bitrdi | |
24 | 23 | exbidv | |
25 | 19.42v | |
|
26 | 24 25 | bitrdi | |
27 | 26 | biimpar | |
28 | 12 14 16 27 | syl12anc | |
29 | 26 | simprbda | |
30 | 13 | adantr | |
31 | 29 30 | mpbid | |
32 | 28 31 | impbida | |
33 | 32 | eqabdv | |
34 | 11 33 | eqtr4id | |
35 | df-fn | |
|
36 | 10 34 35 | sylanbrc | |
37 | 20 | rneqd | |
38 | rniun | |
|
39 | vex | |
|
40 | 39 | snnz | |
41 | rnxp | |
|
42 | 40 41 | ax-mp | |
43 | 13 | biimpa | |
44 | 2 | toptopon | |
45 | 18 44 | sylib | |
46 | 45 | adantr | |
47 | 1 | toptopon | |
48 | 3 47 | sylib | |
49 | 48 | adantr | |
50 | 6 | adantr | |
51 | simpr | |
|
52 | trnei | |
|
53 | 52 | biimpa | |
54 | 49 50 51 14 53 | syl31anc | |
55 | 5 | adantr | |
56 | flfelbas | |
|
57 | 56 | ex | |
58 | 57 | ssrdv | |
59 | 46 54 55 58 | syl3anc | |
60 | 43 59 | syldan | |
61 | 42 60 | eqsstrid | |
62 | 61 | ralrimiva | |
63 | iunss | |
|
64 | 62 63 | sylibr | |
65 | 38 64 | eqsstrid | |
66 | 37 65 | eqsstrd | |
67 | df-f | |
|
68 | 36 66 67 | sylanbrc | |