Metamath Proof Explorer


Theorem cntzsubrng

Description: Centralizers in a non-unital ring are subrings. (Contributed by AV, 17-Feb-2025)

Ref Expression
Hypotheses cntzsubrng.b B=BaseR
cntzsubrng.m M=mulGrpR
cntzsubrng.z Z=CntzM
Assertion cntzsubrng Could not format assertion : No typesetting found for |- ( ( R e. Rng /\ S C_ B ) -> ( Z ` S ) e. ( SubRng ` R ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 cntzsubrng.b B=BaseR
2 cntzsubrng.m M=mulGrpR
3 cntzsubrng.z Z=CntzM
4 2 1 mgpbas B=BaseM
5 4 3 cntzssv ZSB
6 5 a1i RRngSBZSB
7 simpll RRngSBzSRRng
8 ssel2 SBzSzB
9 8 adantll RRngSBzSzB
10 eqid R=R
11 eqid 0R=0R
12 1 10 11 rnglz RRngzB0RRz=0R
13 7 9 12 syl2anc RRngSBzS0RRz=0R
14 1 10 11 rngrz RRngzBzR0R=0R
15 7 9 14 syl2anc RRngSBzSzR0R=0R
16 13 15 eqtr4d RRngSBzS0RRz=zR0R
17 16 ralrimiva RRngSBzS0RRz=zR0R
18 simpr RRngSBSB
19 1 11 rng0cl RRng0RB
20 19 adantr RRngSB0RB
21 2 10 mgpplusg R=+M
22 4 21 3 cntzel SB0RB0RZSzS0RRz=zR0R
23 18 20 22 syl2anc RRngSB0RZSzS0RRz=zR0R
24 17 23 mpbird RRngSB0RZS
25 24 ne0d RRngSBZS
26 simpl2 RRngSBxZSyZSzSxZS
27 21 3 cntzi xZSzSxRz=zRx
28 26 27 sylancom RRngSBxZSyZSzSxRz=zRx
29 simpl3 RRngSBxZSyZSzSyZS
30 21 3 cntzi yZSzSyRz=zRy
31 29 30 sylancom RRngSBxZSyZSzSyRz=zRy
32 28 31 oveq12d RRngSBxZSyZSzSxRz+RyRz=zRx+RzRy
33 simpl1l RRngSBxZSyZSzSRRng
34 5 26 sselid RRngSBxZSyZSzSxB
35 5 29 sselid RRngSBxZSyZSzSyB
36 simp1r RRngSBxZSyZSSB
37 36 sselda RRngSBxZSyZSzSzB
38 eqid +R=+R
39 1 38 10 rngdir RRngxByBzBx+RyRz=xRz+RyRz
40 33 34 35 37 39 syl13anc RRngSBxZSyZSzSx+RyRz=xRz+RyRz
41 1 38 10 rngdi RRngzBxByBzRx+Ry=zRx+RzRy
42 33 37 34 35 41 syl13anc RRngSBxZSyZSzSzRx+Ry=zRx+RzRy
43 32 40 42 3eqtr4d RRngSBxZSyZSzSx+RyRz=zRx+Ry
44 43 ralrimiva RRngSBxZSyZSzSx+RyRz=zRx+Ry
45 simp1l RRngSBxZSyZSRRng
46 simp2 RRngSBxZSyZSxZS
47 5 46 sselid RRngSBxZSyZSxB
48 simp3 RRngSBxZSyZSyZS
49 5 48 sselid RRngSBxZSyZSyB
50 1 38 rngacl RRngxByBx+RyB
51 45 47 49 50 syl3anc RRngSBxZSyZSx+RyB
52 4 21 3 cntzel SBx+RyBx+RyZSzSx+RyRz=zRx+Ry
53 36 51 52 syl2anc RRngSBxZSyZSx+RyZSzSx+RyRz=zRx+Ry
54 44 53 mpbird RRngSBxZSyZSx+RyZS
55 54 3expa RRngSBxZSyZSx+RyZS
56 55 ralrimiva RRngSBxZSyZSx+RyZS
57 27 adantll RRngSBxZSzSxRz=zRx
58 57 fveq2d RRngSBxZSzSinvgRxRz=invgRzRx
59 eqid invgR=invgR
60 simplll RRngSBxZSzSRRng
61 simplr RRngSBxZSzSxZS
62 5 61 sselid RRngSBxZSzSxB
63 simplr RRngSBxZSSB
64 63 sselda RRngSBxZSzSzB
65 1 10 59 60 62 64 rngmneg1 RRngSBxZSzSinvgRxRz=invgRxRz
66 1 10 59 60 64 62 rngmneg2 RRngSBxZSzSzRinvgRx=invgRzRx
67 58 65 66 3eqtr4d RRngSBxZSzSinvgRxRz=zRinvgRx
68 67 ralrimiva RRngSBxZSzSinvgRxRz=zRinvgRx
69 rnggrp RRngRGrp
70 69 ad2antrr RRngSBxZSRGrp
71 simpr RRngSBxZSxZS
72 5 71 sselid RRngSBxZSxB
73 1 59 70 72 grpinvcld RRngSBxZSinvgRxB
74 4 21 3 cntzel SBinvgRxBinvgRxZSzSinvgRxRz=zRinvgRx
75 63 73 74 syl2anc RRngSBxZSinvgRxZSzSinvgRxRz=zRinvgRx
76 68 75 mpbird RRngSBxZSinvgRxZS
77 56 76 jca RRngSBxZSyZSx+RyZSinvgRxZS
78 77 ralrimiva RRngSBxZSyZSx+RyZSinvgRxZS
79 69 adantr RRngSBRGrp
80 1 38 59 issubg2 RGrpZSSubGrpRZSBZSxZSyZSx+RyZSinvgRxZS
81 79 80 syl RRngSBZSSubGrpRZSBZSxZSyZSx+RyZSinvgRxZS
82 6 25 78 81 mpbir3and RRngSBZSSubGrpR
83 eqid mulGrpR=mulGrpR
84 83 rngmgp Could not format ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) : No typesetting found for |- ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) with typecode |-
85 83 1 mgpbas B=BasemulGrpR
86 85 sseq2i SBSBasemulGrpR
87 86 biimpi SBSBasemulGrpR
88 eqid BasemulGrpR=BasemulGrpR
89 2 fveq2i CntzM=CntzmulGrpR
90 3 89 eqtri Z=CntzmulGrpR
91 eqid ZS=ZS
92 88 90 91 cntzsgrpcl Could not format ( ( ( mulGrp ` R ) e. Smgrp /\ S C_ ( Base ` ( mulGrp ` R ) ) ) -> A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( +g ` ( mulGrp ` R ) ) y ) e. ( Z ` S ) ) : No typesetting found for |- ( ( ( mulGrp ` R ) e. Smgrp /\ S C_ ( Base ` ( mulGrp ` R ) ) ) -> A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( +g ` ( mulGrp ` R ) ) y ) e. ( Z ` S ) ) with typecode |-
93 84 87 92 syl2an RRngSBxZSyZSx+mulGrpRyZS
94 83 10 mgpplusg R=+mulGrpR
95 94 oveqi xRy=x+mulGrpRy
96 95 eleq1i xRyZSx+mulGrpRyZS
97 96 2ralbii xZSyZSxRyZSxZSyZSx+mulGrpRyZS
98 93 97 sylibr RRngSBxZSyZSxRyZS
99 1 10 issubrng2 Could not format ( R e. Rng -> ( ( Z ` S ) e. ( SubRng ` R ) <-> ( ( Z ` S ) e. ( SubGrp ` R ) /\ A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( .r ` R ) y ) e. ( Z ` S ) ) ) ) : No typesetting found for |- ( R e. Rng -> ( ( Z ` S ) e. ( SubRng ` R ) <-> ( ( Z ` S ) e. ( SubGrp ` R ) /\ A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( .r ` R ) y ) e. ( Z ` S ) ) ) ) with typecode |-
100 99 adantr Could not format ( ( R e. Rng /\ S C_ B ) -> ( ( Z ` S ) e. ( SubRng ` R ) <-> ( ( Z ` S ) e. ( SubGrp ` R ) /\ A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( .r ` R ) y ) e. ( Z ` S ) ) ) ) : No typesetting found for |- ( ( R e. Rng /\ S C_ B ) -> ( ( Z ` S ) e. ( SubRng ` R ) <-> ( ( Z ` S ) e. ( SubGrp ` R ) /\ A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( .r ` R ) y ) e. ( Z ` S ) ) ) ) with typecode |-
101 82 98 100 mpbir2and Could not format ( ( R e. Rng /\ S C_ B ) -> ( Z ` S ) e. ( SubRng ` R ) ) : No typesetting found for |- ( ( R e. Rng /\ S C_ B ) -> ( Z ` S ) e. ( SubRng ` R ) ) with typecode |-